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About This Class

Theme We introduce the learning problem as the problem
of function approximation from sparse data. We define
the key ideas of loss functions, empirical error and gen-
eralization error. We then introduce the Empirical Risk
Minimization approach and the two key requirements
on algorithms using it: well-posedness and consistency.
We then describe a key algorithm — Tikhonov regular-
ization — that satisfies these requirements.

Math Required Familiarity with basic ideas in probability
theory.



Data Generated By A Probability
Distribution

We assume that X and Y are two sets of random variables.
We are given a training set S consisting ¢ samples drawn
i.i.d. from the probability distribution X x Y:
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We will make frequent use of the conditional probability
of y given x, written p(y|z):
p(z,y) = p(y|x) - p(x)

It is crucial to note that we view p(x,y) as fixed but un-
known.



Probabilistic setting




Learning As Function Approximation From

Samples: Regression and Classification

The basic goal of supervised learning is to use the training
set S to “learn” a function fg that looks at a new z value
rnew and predicts the associated value of y:

Ypred — fs(znew)

If y is a real-valued random variable, we have regression.

If y takes values from an unordered finite set, we have
pattern classification. In two-class pattern classification
problems, we assign one class a y value of 1, and the other
class a y value of —1.



Loss Functions

In order to measure goodness of our function, we need a
loss function V. In general, we let V(f(x),y™) denote the
price we pay when we see x and guess that the associated
y value is f(x) when it is actually y*.



Common Loss Functions For Regression

For regression, the most common loss function is square
loss or L2 loss:

V(f(z),y) = (f(z) —y)?

We could also use the absolute value, or L1 |loss:

V(f(z),y) = |f(z) -y

Vaphnik's more general e-insensitive loss function is:

V(f(z),y) = (f(z) —yl —e)4



Common Loss Functions For Classification
For binary classification, the most intuitive loss is the 0-1 loss:

V(f(z),y) = 0(—yf(z))

For tractability and other reasons, we often use the hinge loss (im-
plicitely introduced by Vapnik) in binary classification:

V(If(@),y) =0 -y fz))+



Generalization error and empirical error

Given a function f, a loss function V, and a probability distribution P
over X and Y, we can define the expected error of f as:

M= [ V(@)
which is also the expected loss on a new example drawn at random
from a distribution (and where we use du to mean dP).
We would like to make I[f] small, but in general we do not know P.

Given a function f, a loss function V, and a training set S consisting
of ¢ datapoints, we can measure the empirical error (or risk) of f as:

Il =5 SV, )



Hypothesis Space

The hypothesis space H is the space of functions that
we allow our algorithm to search. It is often chosen with
respect to the amount of data available.



Empirical Risk Minimization

Given a training set S and a function space ‘H, empirical risk
minimization (Vapnik) finds a function fg that minimizes
the empirical risk over all functions f € 'H:

fs = arg ]r[élﬂ Ig[f]

1 J4
— in— 1% Y.y
argjcréggggl (f(z),y;i)

(For now, we are assuming the existence of such a func-
tion.)



Consistency and Well-posedness of
Empirical Risk Minimization

For the solution of ERM to be useful in the context of
learning, the solution must be

e ‘‘consistent”

e it also must exist, be unique and be ‘“stable” (well-
posedness).



Consistency of ERM

Consistency means that the difference Ig[fs] — I[fg] must
go to zero as the number of training examples increases,
that is £ — oo. In other words, the training error for the
ERM solution must converge to the expected error and
thus be a “proxy” for it. Otherwise the solution would not

be “predictive’ .



Here iIs a graphical example: given a certain
number of samples...
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suppose this is the ‘“‘true” solution...

f(x)
A




. but ERM (gives this solution!

f(x)
A




How can I guarantee that for a sufficient
number of examples the ERM solution will
converge to the true one?

f(x)
A




Uniform Glivenko-Cantelli Classes

As we will see later a proper choice of the hypothesis space
H ensures consistency of ERM. The key property is the
uGC property. We say that a class of functions F is a
uniform Glivenko-Cantelli (uGC) class iff, for all e > 0 and
for all u,

P, ( im sup |7[f] — Is[f]] > ) =0
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We will be exploring this definition (and equivalent defini-
tions) in detail in 9.520. If ‘H is a uGC class, this directly
implies that Ig[f] —I[f] for every function f in H gets small

as ¢ — oo.



Well-posedness of ERM

ERM is in general an ill-posed problem. It can be made
well-posed by an appropriate choice of H.

As we will see later, well-posedness is mainly used to mean
stability of the solution: fg depends continuously on the
training set S. In particular, changing one of the training
points should affect less and less the solution as ¢ goes to
infinity.



General definition of Well-Posed and
IlI-Posed problems

A problem is well-posed if its solution:

e exists
e iS unique
e depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed.



Here is a graphical example: given 10
samples...
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...we can find the smoothest interpolating
polynomial.
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But if we perturb the points slightly...
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...the solution changes a lot.
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If we restrict ourselves to degree two
polynomials...
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...the solution varies only a small amount
under a small perturbation.
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Regularization

T he basic idea of regularization is to restore well-posedness
of ERM by constraining the hypothesis space H. An indi-

rect way to do so is to use Tikhonov regularization (which
is not ERM).



Tikhonov Regularization

ERM finds the function in ‘'H which minimizes
1 4
= V() vi)
¢ i=1

which in general — for arbitrary hypothesis space ‘H — is ill-
posed. Instead, we minimize over the hypothesis space H,
for a fixed positive parameter )\, the regularized functional

14
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where ||f||% is the norm in Hy — the Reproducing Kernel
Hilbert Space (RKHS), defined by the kernel K.



Tikhonov Regularization

As we will see in future classes

e Tikhonov regularization ensures well-posedness eg ex-
istence, uniqueness and especially stability (in a very
strong form) of the solution

e Tikhonov regularization ensures consistency

e Tikhonov regularization is closely related to — but dif-
ferent from — Ivanov regularization, eg ERM on a hy-
pothesis space 'H which is a ball in a RKHS.



Next Class

e In the next class we will introduce RKHS: they will be
the hypothesis spaces we will work with.

e We will also derive the solution of Tikhonov regular-
ization.



Appendix: Target Space, Sample and
Approximation Error

In addition to the hypothesis space H, the space we allow
our algorithms to search, we define...

The target space 7 is a space of functions, chosen a priori
in any given problem, that is assumed to contain the “true”
function that minimizes the risk. Often, 7 is chosen to be
all functions in Lo, or all differentiable functions.



Sample Error (also called Estimation Error)
Let fiy be the function in H with the smallest true risk.

We define the sample error to be I[fg] — I[fx], the dif-
ference in true risk between the best function in 'H and
the function in 'H we actually find. This is what we pay
because our finite sample does not give us enough infor-
mation to choose to the “best” function in ‘H. We'd like
this to be small.

A main topic of this course is “bounding” the sample er-
ror; determining conditions under which we can state that
I[fs] — I[f+] will be small (with high probability).

As a simple rule, we expect that if 'H is “well-behaved”,
then, as ¢ gets large the sample error will become small.



Approximation Errror
Let fo be the function in 7 with the smallest true risk.

We define the approximation error to be I[fy]—I[fo], the
difference in true risk between the best function in '"H and
the best function in 7. This is what we pay because H is
smaller than 7. We'd like this error to be small too.

We will focus less on the approximation error in 9.520, but
we will explore it.

As a simple rule, we expect that as ‘H grows bigger, the
approximation error gets smaller. If 7 C 'H — which is a
Ssituation called the realizable setting —the approximation
error is zero.



Generalization Error

We define the generalization error to be I[fq] — I[fo],
the difference in true risk between the function we actually
find and the best function in 7. We'd really like this to be
small.

The generalization error is the sum of the sample error and
the approximation error:

I[fs] — Ilfol = (U[fs] = ILfn]) + (U [fnl = 1[f0l)

If we can make both the approximation and the sample
error small, the generalization error will be small. There is
a tradeoff between the approximation error and the sample
error...



The Approximation/Sample Tradeoff

It should already be intuitively clear that making H big
makes the approximation error small. This implies that we
can (help) make the generalization error small by making
‘H big.

On the other hand, we will show that making H small will
make the sample error small. In particular, if H is a uGC
class, the sample error will go to zero as ¢ — oo, but how
quickly it goes to zero depends directly on the “size” of 'H.
This implies that we want to keep 'H as small as possible.
(Furthermore, 7 itself may or may not be a uGC class.)

Ideally, we would like to find the optimal tradeoff between
these conflicting requirements.



Generalization Error Definition Caveat

We define the generalization error to be I[fg] — I[fo]. In
the literature, the true risk of the function we find, I[fq]
IS sometimes called the generalization error. In the case
where I[fo] = 0, the two approaches are equivalent.



estimation error

11, 12 = number of data
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