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Mappings and hypothesis spaces

We have discussed how the stability of the learning map
A: S — fg can be used to obtain generalization bounds,
i.e. consistency. We also noted that the uniform stability
described is a strong condition and there are mappings
that are consistent but do not have this strong notion of
stability.

We now look from a different perspective: controlling the
hypothesis space. The mapping and the hypothesis space
can be related as follows:

the hypothesis space H is the space of all possible functions
that the map A : S — fg can output given all possible sets
S.

We will use properties of the hypothesis space to get gen-
eralization bounds, ie show consistency.



Generalization bounds by controlling the
hypothesis space

We discussed how the stability of a map can be used to
obtain generalization bounds. We now control the size of
hypothesis spaces to obtain generalization bounds.

For example, functions in an RKHS with ||f||% < M form
a totally bounded hypothesis space whose “size” can be
measured and used to obtain generalization bounds. This
approach will be discussed now.




RisksS

Recall that in Lecture 2 we've defined the true (expected)
risk:

11f5] = E ey VGO, 0] = [ V{560, 1)dux,v)

and the empirical risk:

14
Islfsl =5 3 V(s ).
1=1



Generalization Bounds

Our goal is to choose a function fg so that I[fg] will be
small. This is difficult because we can’t measure I[fg].

We can, however, measure I¢[fg]. A generalization bound
is a (probabilistic) bound on how big the defect

D[fs]l = I[fs] — Islfs]

can be. If we can bound the defect and we can observe
that Ig[fg] is small, then I[fg] must be small.

Note that this is consistency for ERM, as we’'ve defined
in Lect. 2: D[fg] — 0, as £ — .



Uniform convergence

By uniform convergence we mean for any € > 0

lim IP {sup Is[f] — I[f]| > 5} — 0.
fer

{— 00

Note this is two-sided uniform convergence.
Function classes that satisfy this property are uGC classes.

We will show

P {sup Lol — I1f1] > } < (M, &, £) exp(—C=20).
feH



Consistency

Empirical risk minimization is consistent if in probability

Jim {Is[fs] = ;Q;I[f]}

or for any given € >0
lim IP< |1 — inf I
Jim { sfs] = jnf 1171
The expected error of the minimizer of the empirical er-
ror converges to the best possible expected error in the

hypothesis space H.

>€}—>O

Question: Is Tikhonov regularization consistent 7
Answer: Depends on how fast the regularization parameter
A decays.



A key Lemma

The following statements are equivalent:

e For any distribution in a set, the empirical risk mini-
mization method is consistent on the set of functions
feH

e For any distribution in a set, the uniform convergence
of the empirical error to the expected error takes place
on the set of functions f € H.

Consistency of ERM < uniform convergence < uGC.



Uniform convergence for one function

If our function space consists of one function fq, we can
show

P {|I5[f1] — I[f1]] < €} > 1 — 2exp(—e*(C).

If our loss function is bounded 0 < V(fi(x),y) < B then
we can use Hoeffding's inequality: let X be a set and D a
distribution on X with functions h : X — [a, b] then

|

Applying the inequality to the loss results in

1 !
7 > h(z;) — Eph(x)

1=1

> e} < 2exp(—2€2¢/(a — b)?).

P {|Is[f1] — I[f1]| < €} > 1 — 2exp(—2€2¢/B?).



Uniform convergence for k£ functions
If our RKHS consisted of k£ functions fq, ..., fi we can show

P {f’_rnalx . Is[f;] — I[f;]] < e} > 1 — 2k exp(—€2£0).

We know that for each function f;

P {|Is[f;] — I[fill < €} > 1 —2exp(—2¢°¢/B?).

We need the above to hold for all & functions. So we apply
the union bound (Bonferroni approximation)

PlaubUc) < P(a) + P(b) + P(c)

SO

P {frnalx . I[f;] — I1fi]] < e} >1 -2k exp(—2€2€/32).



Ivanov regularization

In the literature this is called empirical risk minimization
within a restricted hypothesis space.

The functional we minimize has the form:

fe
st. |IflI%k < M.

1 14
fs = arg migzz_;v(f(wi),yi)



Tikhonov = Ivanov regularization

We saw in the last class that for any Lipschitz loss function
Co
I£I% <=

where Y < ().

So we can take our Tikhonov problem and solve instead

Js = ;np‘ ; V(f(xz) yz
5 Co
s.t. [l < -



Uniform convergence for totally bounded
RKHS (intuition)

In general our RKHS are not a finite set of functions. In-
stead they have the form f € H with ||f]|% < M.

We will count the number of functions in this space using
an e-net. That is we can pick some N functions
g1,..-,gN € H for which 3g; such that Vf d(f,g;) <e.

We will use

d(f,9:) = |f — gill% or d(f,g;) = sup If — gill-

Why is N finite for a totally bounded RKHS 7



Uniform convergence for totally bounded
RKHS (more intuition)

The covering number N (H,r) is the minimal m € IN such
that there exists m disks in ‘H with radius r covering H.

Now we can show using the same argument as we used for
k functions that

P sup  |Iglfl = Ilfl| <ep > 1—=2N(H(M),r(e),d)
fEH:FIF <M

exp(—2€2¢/B?).



Computing covering numbers in finite
dimensional RKHS

For a finite dimensional bounded RKHS

Hig = {f  f(z) = Z Cpﬁbp(l')}a

p=1
with |[fl|% < M.

We want to compute N(H,r,d).



Computing covering numbers in finite
dimensional RKHS (cont)

Each function g; can be written as

gi(z) = Y dipop(x)

p=1
so we now rephrase the problem as finding m vectors d; for
which

< r2.

i (Cp — dip)Q

p= 1 >\p



Computing covering numbers in finite
dimensional RKHS (cont)

This is equivalent asking how many balls of radius r are
required to cover a ball of radius M in IR™ using the Eu-
clidean metric.

Instead of the covering numbers we will compute packing
numbers.

N functions g1,...,gn are r-separated if d(g;, g;) > r for i #
j. The packing number D(H, r,d) is the maximal cardinality
of r-separated sets.

A fact
D(H7 2,r7 d) S N(H) T) d) S D(H7 T? d)'



Computing packing numbers in finite
dimensional RKHS (cont)

How many balls of radius r are required to pack a ball of
radius M in IR™ using the Euclidean metric
M m
D < (3_) |
T

SO we have

NHM), 7 |- k) < (%)m
3MN\™

TR

NHOM), 7, | - floo) < (

A quantity that will show up often is metric entropy

log N(H(M), ).



Computing covering numbers in infinite
dimension RKHS

In an infinite dimensional bounded RKHS we know our
space is defined as

iy = {f @) =3 cp¢p<x>},

p=1
and ||f[|% < M.

Note the above results cannot be used since they are ex-
ponential in the dimensionality of the RKHS space.
The covering numbers are finite for the inclusion

Iy - Hy — C(X)
which we will write I (Bpg).




Computing covering numbers In infinite
dimension RKHS (cont.)

We first state three results about the covering numbers for
infinite dimensional RKHS.

If the eigenvalues of the kernel function decay exponentially

then
N(H(M),r) < ((’%M)m+1

where d is the dimensionality of the input space.

If the kernel is Cx then

N(H(M),r) < exp ((ChM>2m/h>

r

where h is a finite integer.



Computing covering numbers in infinite
dimension RKHS (cont.)

If the kernel is Cs (and s is odd) then
C M\ 2m/s
N(H(M),r) < exp ((—) )
-

The following relation for metric entropy (the log of the
covering number)

NN (H(M),r)) = O <(CTM) 2m/s>

is very classical and standard with the m/s tradeoff as the
key aspect.



Computing covering numbers in infinite
dimension RKHS (cont.)

The proof for the first result

Nen.n < (ST

IS conceptually very similar to the Hilbert cube example

(see Mathcamp 1).

The other two results require knowledge of Sobolev spaces
and embedding in Sobolev spaces.



Sobolev spaces and embeddings

A function belongs to a Sobolev space W™P(IRY) if it and
all its partial derivatives up to m belong to LY (IR%). If the
following norm is finite then a function is in W™2(IR%)

1715 ety = 32 IV,

Zhou 2002: '"Capacity of RKHS in Learning Thoery”,
Preprint

If a kernel that satisfies Mercer's theorem is Cs (for some
odd s > 0) the RKHS associated with the kernel can be
embedded into (/5. This allows us to upper bound the
covering number of the RKHS using covering and packing
number results for Sobolev spaces.



Covering numbers in Sobolev spaces

The following two results were computed using facts about
covering numbers of Sobolev spaces.

If the kernel is Cx then

N(H(M), ) < exp ((C@M )Qd/ h)

where h is an index of the Sobolev space embedded into.

If the kernel is Cs (and s is odd) then

N(H(M),r) < exp ((CM )2d/8> |

r



Computing r(e)

For a variety of kernels we now know how to compute
N(H(M),r(€)).

We now have to compute r(e) to finish the bounds and
this function will depend on the loss function used.

We fist look at the square loss case V(f(z),vy) = (f(z)—y)?
with the requirement that |f(z) —y| < B" Vf(z) and y.

In this case r(e) = g5



Computing r(e) for square loss

We first estimate the quantity
[ I[f1] — Is[f1] — I[f2] + Islf2ll.

I[f1]—Is[f1]l—I[f2]+Is(f2]| < |I[f1]l—11f2ll+|Islf1]l—1slf2]]

and

[ I[f1] — I[f2]]

| [(A@) = @) (1) = f2(2) = 29)

11 = falloo [ 101G = ) + (f2(@) = 9)]
2B'||f1 — falloo-

IA A



Computing r(e) for square loss (cont)

Similarly

[Is[f1] — Islf2]] = ‘%Z(fl(xi) — fo(x)) (f1(z;) — folz;) — 2y;)
< 2B'||f1 = f2|loo-

So

I[f1] — Is[f1] — I1f2] + Islf2ll < 4B'||f1 — f2llso-

If we set r = 4LB, then we know that

I[f1]—Islf1] —I[f2]F+1slf2]] < 4B'||f1— falloo < 4B/4LB’ = e



Computing r(e) for square loss (cont)

From this we know within a cover D; and f; the ji* pro-
totype function

sup [I[f] — Islfll = 2e = |I[f;] — Islf;ll = e
fEDj

If we look at the N prototype functions fq,..., far used in
the cover the following holds true for each cover:

P { sup |11f] - Is[f]] > 2e} < Pl - Islf)l = )

feb,
2 2
< 2exp(—e“l/B<).



Generalization bound for square loss (cont)

This gives us our relation
€

r(e) = SH

Which gives us the following bound

p{ sup I[f]Is[f]<e} < 12V (M),

A2
fer:fllg<M

exp(—e2l/B?).

This can be rewritten: with probability 1 — ¢

I[f] < Ig[f] + \/g(logNJr log (2/4)).

8B’

)



Lipschitz Loss Functions
For Lipschitz loss functions we can also compute r(¢)

Recall a loss function (over a possibly bounded domain X)
IS Lipschitz with Lipschitz constant L if

Yy1,y2,¥ €Y, [V(y1,y) — V(y2,v")| < Llyr — vol.

Using much of the same algebra as for the square loss we
can compute r(e).



Sufficiency for uGC classes

If our hypothesis space is compact, has a finite cover, we
have shown that we get uniform convergence and therefore
consistency. Compactness is a sufficient condition for uGC
classes.

Is compactness also necessary 7
How do we deal with {0, 1} loss, which is not Lipschitz 7

Answer to these and other pressing issues next Monday.



