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Plan
e Measuring the complexity of function spaces.
e Definitions of VC dimension and scale sensitive ver-

sions.
e Necessary and sufficient conditions for uniform conver-

gence.



Uniform convergence for classification

Our loss function is now V(f(z),y) = ©(—yf(x)) and our
RKHS is ||f||% < M.

Our goal is to bound the following

P sup I[f] — Is[f]| > €
feH:| flI%<M

For one function we could use the Chernoff bound

P{|I[f] = Is[f]] > €} < 2exp(—2¢€2¢).



Uniform convergence for classification
(cont)

We then would want to use the union bound over the num-
ber of "essential” functions in the class which we already
determined. We have seen how to relate the ¢ in the bound
with the r covering radius for square loss.

What about if V(f(z),y) = (—yf(x)) 7



Classification is scale insensitive

The key result in computing r(e) was showing that if
[ f1(x) — f2(2)]|oc < 7(€)
then
V(fi(z),y) = V(fo(z),y)| <e Vz,y.

For the classification loss function e = 1 and varying r(e)
has no effect.



Counting classification functions

Given £ points {(z1,y1), ..., (zy,yp) }, for every f € H(M) we

get different " labelings” {©(—y1f(x1)),...,©(—ypf(xyp))} (or,
alternatively, different vertices of the [0, 1] cube are spanned).

We define the random VC entropy as the number of la-
belings that can be implemented over f € H(M) written
as

NHM) (21, 91), oy (2, yp))-

An obvious property of NHM)((zq,y1), ..., (xp, yp)) is:

NHOD (21, y1), ..., (24, y0)) < 2°.



Counting classification functions

Notice that
NHOD (24, 91), ..., (24, y0)).

depends on data so we need to take the expectation to
use it

N — Exl,yl,...,xg,ygNH(M)((ml7 yl)a ceey (xéa yé))

We can use the following bound

P sup I1f] — I[f]] > ey < 2N exp(—2¢€2¢).
feM:|IfIIZ <M



A necessary and sufficient condition

Iff
I
i og N

{—00 /

do we get uniform convergence in probability.

> 0,

So the capacity can increase polynomially in £ but not ex-
ponentially.



Implementation of different labelings
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Implementation of different labelings
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The 8 possible labelings of 3 points in 2D
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Example
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Example
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How Many Labelings?
Sauer’s Lemma

If the hypothesis space can separate h points in all possible
(2" ways), then ¢ > h points can be labeled in

S ()< ()

possible ways and



VC-dimension

The VC-dimension of a set of binary functions is h if and
only if

e [here is at least one set of h points that can be
labeled in all possible ways;

e there is no set of h+ 1 points that can be labeled in
all possible ways;



Classification

The finiteness of the VC-dimension of the set of functions
f € H(M) for the classification loss is a necessary and
sufficient for uniform convergence of Ivanov regularization
(empirical risk minimization in a bounded function class)
for arbitrary probability distributions with a fast rate of
convergence.



VC-bound

We can now bound the defect in the case of classification

/ h
p sup  |I[f] — I[f]] > € b < 2 (e—) exp(—2620).
fer:|fl2 <M h

Which allows us to state that with probability 1 — ¢

hin(ef/h) —In(6/2)

Ilf] < Islf] + \/ ;



VC dimension of hyperplanes
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all the possible labelings not all the possible labelings

VC-dimension = 3



VC dimension for RKHS
For hyperplanes in R? the VC-dimension is d + 1. For a
RKHS with dimensionality N the VC-dimension is N + 1
independent of the restriction on the norm.

What happens in the case of Gaussian kernels ?

"Dear Tommy, it may be infinite” —— V. Vapnik 1999.



VC-dimension and free parameters

The VC-dimension is proportional, but not necessarily equal,
to the number of parameters.

e For Multilayer Perceptrons with hard thresholds h «
nlnn (Maass, 1994);

e For Multilayer perceptrons with standard sigmoid thresh-
olds h x n? (Koiran and Sontag, 1995):

e For classification functions of the form 6(—ysin(ax))
the VC-dimension is infinite;



Empirical covering numbers

Instead of using the sup norm as the metric of our cover
we can use

day(f1, f2) = max|f1(z;) — fa(z;)|.

The empirical covering number N (H,r,dz,) is the mini-
mal m € IN such that there exists m disks in 'H with radius
r covering function values at ¢ points.



Empirical covering numbers

Notice that
N(Ha r, d:l?g)

depends on data so we need to take the expectation to
use it

N =EgN(H,r, dz,).



A necessary and sufficient condition

Iff for any given r > 0
I
im 109N
{—00

do we get uniform convergence in probability.

0,

So the capacity can increase polynomially in ¢ but not ex-
ponentially at any scale.

Is there a number like VC dimension for classification that
can be used to bound the empirical cover ?



V, dimension and shattering

The Vy-dimension of Fy  is defined as the the maximum
number h of vectors {(x1,vy1),-.., (xy,yp)} that can be sep-
arated into two classes in all 2" possible ways using rules:

class 1 if: V(y;, f(x;)) > s+~
class O if: V(y;, f(x;)) <s—~

for some s > 0. If, for any number N, it is possible to find
N points that can be separated in all possible ways, the
Vy-dimension is infinite.



Key result (Alon et al. 93)

Finiteness of the V, dimension for every v > 0 is a neces-
sary and sufficient condition for distribution independent
uniform convergence of the ERM method for real-valued

functions.



V, dimension

The expectation of the cover is bounded by the V5 dimen-
sion

44 hlog(2el/(hr))
]ESN(H,T, daje) S 2 (74_2> .

For the square loss bounded with the same constants as
we saw in last class we get

40 hlog(2et/(h(e/8B")))
B ((6/83’)2>
exp(—€*t/B?).

P {sup 11 - Islf]] < }
feH



