Bagging and Boosting
9.520 Class 10, 12 March 2002

Sayan Mukherjee



Plan

Bagging and sub-sampling methods

Bias-Variance and stability for bagging

Boosting and correlations of machines

Appendix: boosting and margin, kernel ensembles and
leave one out error, boosting and gradient descent in
function spaces.



Bagging (Bootstrap AGGregatING)

Given a training set D = {(x1,v1),... (xs,yo)},

e sample N sets of £ elements from D (with replacement)
Di,Do>,... Dy — N quasi replica training sets;

e train a machine on each D;, : = 1,..., N and obtain a
sequence of N outputs fi1(x),... fv(x).



Bagging (cont.)

The final aggregate classifier can be

e for regression
~ N
fx) =) fi(x),
i=1

the average of f; for : =1,..., N,

e for classification

N
Fx) =00 sign(fi(x)))
i=1

the majority vote from sign(f;(x)).



Variation I. Sub-sampling methods

- “Standard” bagging: each of the N subsamples has size
¢ and created with replacement.

- “Sub-bagging”: create N subsamples of size o only (a <

0.

- No replacement: same as bagging or sub-bagging, but
using sampling without replacement

- Overlap vs non-overlap: Should the N subsamples over-
lap? i.e. create N subsamples each with % training data.



Bias - Variance for Regression (Breiman
1996)

Let
1] = [(f() = 1)?p(x, y)dxdy

be the expected risk and fo the regression function. With
f(x) = Eg fg(x), if we define the bias as

[ (fo(3) = F)2p(x)dx

and the variance as

Es{ [ (£s() = F0)?p(x)dx}

we have the decomposition

Eq¢{I[fs]} = I[fo] + bias + variance.



Bias-Variance for Classification

No unique decomposition for classification exists. In the
binary case, with f(x) = 0(Eg sign(fg(x))}), the decom-
position suggested by Kong and Dietterich (1995) is

I[f] — I[fo]

for the bias, and
Es{I[fs]} — I[f1}
for the variance, which (again) gives

Eq¢{I[fs]} = I[fo] + bias + variance.



Bagging reduces variance (Intuition)

If each single classifier is unstable — that is, it has high
variance, the aggregated classifier f has a smaller vari-
ance than a single original classifier.

The aggregated classifier f can be thought of as an ap-
proximation to the true average f obtained by replacing
the probability distribution p with the bootstrap approxi-
mation to p obtained concentrating mass 1/¢ at each point

(Xi, ¥i)-



Variance and Stability

Using theorem:

Let f(Xq,...,Xy) bearandom variable depending on £ i.i.d.
random variables X1,..., X, with the property that if X is
a replicate of X;, Vi € {1,...,¢}:

Ey,  x,lf(X1,... . X)) — f(X1,..., X1, X, .. Xp)[] S ¢
Then we have the following bound on the variance of f:

1 I
Var(f(X1,..., X)) < 5 3 e?
1=1

If B is the stability of the algorithm, then:

2
Variance < %



Bagging and Stability

It is intuitive that averaging, i.e. bagging, can smooth the
behaviour of an algorithm. Thus bagging classifiers or re-
gressors may increase stability, depending on the sampling
scheme used for the bagged regressors. We will prove that
averaging with a certain sampling scheme provides gener-
alization bounds with a rate of convergence of the same
order as Tikhonov regularization.



Stability: a reminder

Definition (Bousquet and Elisseeff, 2001) An algorithm
has stability 5 with respect to the loss function V if

VS, 84 € 28 vz € 2, |V(fs,2) — V(fgiu, 2)| < 6.

o~

An algorithm is strongly ¢ or (3, d)-stable if 8, = O (
§=0(e .

) and



Stability

Definition A /oss function V is L-Lipschitz if

V(x,y) € 2 [V(f1(x),y) — V(f2(x),y)| < L|f1(x) — fa(x)].

Definition An algorithm has o-stability if

VS, S50 e 28 vz € 2, |fs(x) = fein(X)| <. (1)

This definition corresponds to the classification stability of
Bousquet et al.: it is closer to the classical definition of
stability — as continuous dependence on the initial data.



Stability

Lemma (Strong) a-stability implies (strong) (3-stability for
L-Lipschitz loss functions. The converse is not true..

In fact, proofs of p-stability of various algorithms usually prove a-
stability (without saying so), then prove (3-stability. For instance,

Theorem Let 'H be a reproducing kernel Hilbert space on a compact
domain X with kernel K s.t. for all t K(x,z) < C}, < co. Let the loss
function V be L-Lipschitz. The learning algorithm defined by

1
%QZ;V(f(xi),yi)+Al\fH% (2)

is a-Stable with



Stability of Bagging

e \We assume bagged regressors to be a-stable. This is a very weak
assumption.

e We consider N regressors f;(x), each trained on a subset of the
training set.

e Each of the subsets has size p; the training set has overall size 4.

e We call f/ the regressor corresponding to f; but obtained when
one of the data points in the whole training set is perturbed.

e The average bagged regressor is defined as %Zévzl fi.

If each f; has a-stability «, then the bagged regressor has also o-
stability < ay,.



Stability of a Special Bagging Scheme

Consider a special sampling scheme for bagging: each of
the N regressors is trained on a disjoint subset of the train-
ing set. In this case N = /¢/p with p fixed. Only one
of the N regressors will be affected by a perturbation of
one of the ¢ training points. Thus only one of the terms
in %|Z§V:1(fj — f;)'| will be different from zero. In this
special case the o-stability of the bagged regressor is %.
Formalizing this reasoning results in a ‘“theorem’ !



Stability of a Special Bagging Scheme
(cont.)

Theorem Consider the bagged regressor +; Zé\le fj, in which
each of the N regressors is «-Sstable for a training set of

size p. There exist sampling schemes such that the bagged

regressor is strongly a-stable with «-stability (O‘Tfﬁp). Its (3-

stability with respect to the L-Lipschitz loss function V is

then (2224,

A similar result extends to combination of classifiers or regressors in
which the bagged classifier (%Zbifi) is a weighted average of the in-
dividual regressors, with weights found by optimization on the training
set. We assume that there is an upper bound on the individual weight
b; for all z, i.e. b; < D. This means that the total weight of each
regressor in the resulting boosted function decreases with increasing
N. Then the a-stability of the weighted regressor is (#).

The above results can be extended to the (3, §)-stability framework of
Kutin and Niyogi (homework?).



Variation II: weighting and combining
alternatives

- No subsampling, but instead each machine uses different
weights on the training data.

- Instead of equal voting, use weighted voting.

- Instead of voting, combine using other schemes.



The original Boosting (Schapire, 1990):
For Classification Only

1. Train a first classifier f1 on a training set drawn from
a probability p(x,y). Let e1 be the obtained training
performance;

2. Train a second classifier f, on a training set drawn from
a probability p>(x,y) such that it has half its measure
on the event that h; makes a mistake and half on the
rest. Let e> be the obtained performance;

3. Train a third classifier f3 on disagreements of the first
two — that is, drawn from a probability p3(x,y) which
has its support on the event that h; and h, disagree.
Let e3 be the obtained performance.



Boosting (cont.)

Main result: If ¢, < p for all 7, the boosted hypothesis

f = MajorityVote (f1, f2, f3)

has training performance no worse than e = 3p? — 2p3
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Correlation of Classifiers

The correlation of two classfiers is;:

C(f1, f2) = E((0(—yf1(=)) — I(f1))(0(—yf2(z)) — I(f2)))

The empirical correlation is simply:
¢

> 0(—yif1(@))0(—yifa(x;))

i=1
which counts how many common errors they two classifiers
have



Correlation and Error Bounds
- Train classifier 1 with error <p
- Train classifier 2 with error <p

- Train classifier 3 on the disagreement set of 1 and 2. Let
n be the error of 3.

If C is the correlation of 1 and 2, then the error of the
3-classifier combination is:

2pn < (p2 4+ C)(1 —2n) +2pn < p



Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

e Maintain a probability distribution over training set;

e Generate a sequence of classifiers in which the “next”
classifier focuses on sample where the ‘“previous’” clas-
sifier failed;

e Weigh machines according to their performance.



Adaboost (pseudocode)

Given a learning method that can use weights on the data,
initialize the distribution as P1(i) = 1/¢.
Then, forn=1,...N:

1. Train a machine with weights P,(7) and get f,;

2. Compute the weighted error e, = Y-¢_1 Po()0(—y:fa(x:));

3. Compute the importance of f, as ap =1/21In (16_6”);

n

4. Update the distribution P,11(i) o< B, (i)e on¥ifn(xi),



Adaboost (cont.)

Adopt as final hypothesis

N
f(x) = sign (Z Oénfn(x)>

n=1



T heory of Boosting

We define the margin of (x;,y;) according to the real value
function f to be
margin(xi, yi) = yif(xi).

Note that this notion of margin is different from the SVM
margin. This defines a margin for each training point!



A first theorem on boosting

Theorem (Schapire et al, 1997)

If running adaboost generates functions with errors:

€1,... €N
Then for Vv
I N
S 00y — wif(x)) < [[ V471 — e)t.

Thus, the training margin error drops exponentially fast if



Appendix: some theories



A second theorem on boosting

Let H be an hypothesis space with VC-dimension d and C
the convex hull of H

C={f:f(X)= S aph(x) | ap > 0; zah=1}
h

heH

Theorem (Schapire et al, 1997)
For Vf € C and Vv > O:

£ d/e
1<) 0(y—wyif(x))+O|—).

i=1 i
This holds for any voting method!



Are these theorems really useful?

e T he first theorem simply ensures that the training error
goes to zero...

e The second gives a loose bound which does not ac-
count for the success of boosting as a learning tech-
nique...



Additive Logistic Regression
(Friedman, Hastie, Tibshirani 1999)

A possibly better insight can be gained by interpreting par-
ticular versions of adaboost as fitting an additive model
using a certain loss function.

For example, in the discrete case (f, € {—1,1}), it can be
shown that adaboost builds an additive logistic regression
model via Newton-like updates for approximately minimiz-
ing the functional

1f] = [ e/ ®p(x,y)dxdy.



Additive Logistic Regression (cont.)

The functional R[f] is minimized at

1 Py = 1|x)
F0) = Slog LW =)
2 " Py=-1|x)
Hence,
o ()
Ply=15) = 5o
e_f(x)
Py =—1lx) =

e_f(x) —|— ef(x)
Note that the usual logistic transform would not have the
factor 1/2.



Why this loss? (Shapire and Singer, 1998)

The loss

V(S0 y) = eV

e iS a differentiable upper bound to the O — 1 loss

e it has similar flavor to the SVM loss

Where is the regularizing term in this case?



Ensembles of Kernel Machines

What happens when combining kernel machines (i.e. SVM)?

e Different subsamples of training data (bagging)

e Different kernels or different features

e Different parameters (i.e. regularization parameter)



Combination of SVM Machines

Let f1(x),..., fy(x) be SVM machines we want to combine
and let
N
f(x) = > cnfu(x)
n=1

for some fixed ¢, > 0 with > ¢, = 1.

We want to study the generalization performance of f(x)



Leave-one-out error

The leave-one-out error (there will be one class on it) is
computed in three steps

1. Leave a training point out

2. Train the remaining points and test the point left out

3. Repeat for each training point and count “errors”
Theorem (Luntz and Brailovski, 1969)

E{R[f]} = E{CV error of fi1}



Leave-one-out of a kernel machine

The leave-one-out error of a kernel machine (without bd) is
upper bounded by

1

> 0(uiK (xi, %) — yif (x:))

i=1
(Jaakkola and Haussler, 1998) We will prove it in one of
the next classes.



Leave-one-out bound for an SVM

For SVM classification we can also write

,’42

¢
> 0(u K (xi,xi) —yif (%)) < —
i=1 p

where r is the radius of the smallest sphere containing the
Support Vectors and p the true margin (different from the

boosting margin!



Leave-one-out bound for a kernel machine
ensemble

The leave-one-out error of a kernel machine ensemble

f(x) = c1fi(x) + cafa(x) + ... + en fn(x)
IS upper bounded by
¢ N

STOCY (K™ (xi,%:)) — yif(x:))

=1 n=1



Leave-one-out bound for an SVM ensemble
(Evgeniou et al., 2000)

For an SVM ensemble, the previous leave-one-out error
bound can be further bounded using the geometry

14 N N 2
00 (@K™ (i, %)) — sif () < 3 -0

where r(,) is the radius of the smallest sphere containing
the SVs of machine n and p(,) the margin of SVM n. This
suggests that bagging SVMs can be a good idea!



Remarks (and possible projects)

1. If the individual regressors are strongly stable, then
bagging does not improve the rate of convergence,
which can be achieved in several different ways (which
ones?).

2. Bagging can have a regularization effect and provides
rates of convergence for the generalization error that
are of the same order as Tikhonov regularization.

3. A very interesting issue in many practical situations, is
whether and how bagging can improve stability for a
given, fixed size ¢ of the training set



Remarks (and possible projects) (cont.)

1. Can the stability ideas be applied to a specific =z to
derive a confidence interval for a new prediction?

2. Intuitively, the empirical error can be reduced by increasing the
size of the subsamples used to train the individual classifiers; this
however tends to increase the correlation between f; and f; and
therefore worsen stability. Call A; = f; — f/. Then I would like
to have sup|A; 4+ Aj| to be “small” compared with the « stability
of f; and f;. One way to achieve this goal is a greedy pursuit
scheme in which a new f; is added to the bagged regressor at
each iteration if its change for any training point substitution is
not correlated with the change in the bagged regressor. This can
be obtained if sup|A; + Aj| < (sup|A;| + sup|A,|) for all ¢ in the
bag.

3. There may be an opportunity for theoretical and em-
pirical projects.



