Leave-one-out approximations

9.520 Class 19, 23 April 2002

Sayan Mukherjee

Plan

- Cross-validation
- Why the leave-one-out estimate is almost unbiased?
- Generalized approximate cross-validation
- Perceptron learning algorithm
- Leave-one-out bound for kernel machines (no b)

Plan

• Leave-one-out bound for kernel machines (with b)

• Span bound

Leave-one-out bound for SVMs with b

• Worst case analysis of leave-one-out error

About this class

We introduce the idea of cross-validation, leave-one-out in its extreme form. We show that the leave-one-out estimate is almost unbiased. We then show a series of approximations and bounds on the leave-one-out error that are used for computational efficiency. First this is shown for least-squares loss then for the SVM loss function. We close by reporting in a worst case analysis the leave-one-out error is not a significantly better estimate of expected error than is the training error.

Cross-validation

Given $S^{\ell} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_{\ell}, y_{\ell})\}$. An algorithm is a mapping from $S \to f_S$. We would like to measure the generalization error.

Cross-validation is one approach to do this. Use $\ell-p$ samples to find the function $f_{S^{\ell-p}}$. Measure the error rate on the remaining p samples

$$e_1 = \frac{1}{p} \sum_{i \in S^p} V(f_{S^{\ell-p}}(\mathbf{x}_i), y_i).$$

Repeat this procedure N times and compute

$$\widehat{e} = \frac{1}{N} \sum_{i=1}^{N} e_i.$$

Hopefully \hat{e} is a good measure of generalization error of f_S .

The leave-one-out error is almost unbiased

For a function f_S^ℓ

$$I[f_{S^{\ell}}] = \int_{\mathbf{x},y} V(f_{S^{\ell}}(\mathbf{x}), y) dP(\mathbf{x}, y)$$
$$\mathcal{L}(S^{\ell}) = \sum_{i=1}^{\ell} V(f_{S^{i}}(\mathbf{x}_{i}), y_{i}).$$

Theorem Luntz-Brailovsky

The leave-one-out estimator is almost unbiased

$$\frac{1}{\ell+1} \mathbb{E} \mathcal{L}(S^{\ell+1}) = I[f_{S^{\ell}}].$$

The leave-one-out error is almost unbiased (proof)

$$\frac{1}{\ell+1} \mathbb{E} \mathcal{L}(S^{\ell+1}) = \frac{1}{\ell+1} \int \sum_{i=1}^{\ell+1} V(f_{S^{i}}(\mathbf{x}_{i}), y_{i}) dP(\mathbf{x}_{1}, y_{1}) ... dP(\mathbf{x}_{\ell+1}, y_{\ell+1})$$

$$= \frac{1}{\ell+1} \int \sum_{i=1}^{\ell+1} (V(f_{S^{i}}(\mathbf{x}_{i}), y_{i}) dP(\mathbf{x}_{i}, y_{i}))$$

$$dP(\mathbf{x}_{1}, y_{1}) ... dP(\mathbf{x}_{i-1}, y_{i-1}) dP(\mathbf{x}_{i+1}, y_{i+1}) ... dP(\mathbf{x}_{\ell+1}, y_{\ell+1})$$

$$= \frac{1}{\ell+1} \mathbb{E} \sum_{i=1}^{\ell+1} V(f_{S^{i}}(\mathbf{x}_{i}), y_{i}) = I[f_{S^{\ell}}].$$

Computing the leave-one-error is in general expensive

In general to compute the leave-one-out error one needs to train on ℓ training sets of size $\ell-1$. This can take alot of time. The following slides show how one can either upper-bound or approximate the leave-one-out error using a function trained on all ℓ samples.

Leave-one-out cross-validation

Given the variational problem

$$\min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} (f(\mathbf{x}_i) - y_i)^2 + \lambda ||f||_K^2.$$

We known the solution has the form

$$f(x) = \sum_{i=1}^{\ell} c_i K(\mathbf{x}, \mathbf{x}_i),$$

where

$$c = (K + \lambda \ell I)^{-1} y.$$

If we call $\mathbf{Q} = (\mathbf{K} + \lambda \ell \mathbf{I})^{-1}$ then the leave-out-out error is

$$I_S[f_{S^i}] = \frac{1}{\ell} \sum_{i=1}^{\ell} \left(\frac{y_i - f_S(\mathbf{x}_i)}{1 - \mathbf{Q}_{ii}} \right)^2.$$

Leave-one-out cross-validation (proof)

We define the vector \mathbf{y}^* where $y_j^* = y_j$ if $j \neq i$ and $y_i^* = f_{S^i}(\mathbf{x}_i)$.

We can show

$$f_{S^i}(\mathbf{x}_i) = \sum_{j=1}^{\ell} \mathbf{Q}_{ij} y_j^*.$$

Now

$$f_{S^{i}}(\mathbf{x}_{i}) - y_{i} = \sum_{j=1}^{\ell} \mathbf{Q}_{ij} y_{j}^{*} - y_{i}$$

$$= \sum_{j \neq i} \mathbf{Q}_{ij} y_{j} + \mathbf{Q}_{ii} f_{S^{i}}(\mathbf{x}_{i}) - y_{i}$$

$$= \sum_{j=1}^{\ell} \mathbf{Q}_{ij} y_{j} - y_{i} + \mathbf{Q}_{ii} (f_{S^{i}}(\mathbf{x}_{i}) - y_{i})$$

Leave-one-out cross-validation (proof)

$$= f_S(\mathbf{x}_i) - y_i + \mathbf{Q}_{ii}(f_{S^i}(\mathbf{x}_i) - y_i).$$

So

$$y_i - f_{S^i}(\mathbf{x}_i) = \frac{y_i - f_S(\mathbf{x}_i)}{1 - Q_{ii}}.$$

Generalized approximate cross-validation

To compute the cross-validation error we need to invert the matrix $\mathbf{K} + \ell \lambda \mathbf{I}$ which can be expensive to compute.

An approximation to the cross vaidation error is

$$I_S[f_{S^i}] \approx \frac{1}{\ell} \frac{\sum_{i=1}^{\ell} (y_i - f_S(\mathbf{x}_i))^2}{(1 - \ell^{-1} \text{tr} \mathbf{Q})^2}.$$

We can compute the trace of ${\bf Q}$ from the eigenvalues, μ_i , of ${\bf K} + \ell \lambda {\bf I}$

$$trQ = \sum_{i=1}^{\ell} \mu_i^{-1}.$$

Perceptron mistake bound

Assume we are given a data set

$$\{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_{\ell}, y_{\ell})\},\$$

with $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i = \{-1, 1\}$, which is *linearly separable*. This means that there exist $\mathbf{w} \in \mathbb{R}^n$ such that

$$(\mathbf{w}^{\top}\mathbf{x}_i)y_i > 0, \quad i = 1,...,\ell.$$

Theorem: A perceptron can separate a linearly separable data set in a finite number of steps τ . Moreover, if R is the bound on the norm of the training vectors and ρ the distance of the closest point from a separating hyperplane, we have

$$\tau \le \frac{R^2}{\rho^2}$$

Proof

Let $\hat{\mathbf{w}}$ be the unit normal vector of a hyperplane separating the ℓ data with no errors and such that the distance of the closest point is equal to ρ . For simplicity we assume that this hyperplane goes through the origin. For the constraint on the minimal distance we have

$$y_i \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_i \ge \rho > 0, \quad i = 1, ..., \ell.$$

Starting with $\mathbf{w}^{(0)} = \mathbf{0}$, we introduce the following learning rule:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$$

if the point \mathbf{x}_i is misclassified by $\mathbf{w}^{(t)}$, or $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)}$ otherwise.

Proof (cont.)

After τ updates we can write

$$\mathbf{w}^{(\tau)} = \sum_{i} d_i y_i \mathbf{x}_i$$

where d_i denotes the number of times in which \mathbf{x}_i was misclassified over training. If the points are drawn randomly some of the d_i could be zero but we surely have

$$\sum d_i = \tau.$$

Now, since $\|\hat{\mathbf{w}}\| = 1$, taking the dot product between $\hat{\mathbf{w}}$ and $\mathbf{w}^{(\tau)}$ we find the following bound

$$\|\mathbf{w}^{(\tau)}\| \ge |\mathbf{w}^{(\tau)\top}\widehat{\mathbf{w}}| = |\sum_i d_i y_i \mathbf{x}_i^{\top}\widehat{\mathbf{w}}| \ge \tau \rho.$$

Therefore, $\|\mathbf{w}^{(\tau)}\|$ is bounded from below by a function growing linearly with τ .

Proof (cont.)

Expanding the square of $\|\mathbf{w}^{(\tau+1)}\|$ we find

$$\|\mathbf{w}^{(\tau+1)}\|^2 = \|\mathbf{w}^{(\tau)}\|^2 + \|\mathbf{x}_i\|^2 + 2y_i\mathbf{x}_i^{\mathsf{T}}\mathbf{w}^{(\tau)}.$$

Now, for all $i=1,...,\ell$ $||\mathbf{x}_i|| \leq R$ and the cross product is not positive (because the *i*-th point has been misclassified). Therefore, at each step in which a correction takes place, the square of the norm of $\mathbf{w}^{(\tau)}$ does not increase by more than R^2 .

Proof (cont.)

Therefore, after τ steps $\|\mathbf{w}^{(\tau)}\|^2$ is bounded from above by a function growing linearly with τ , or

$$\|\mathbf{w}^{(\tau)}\|^2 \le \tau R^2.$$

Combining the two bounds we find

$$\tau^2 \rho^2 \le \|\mathbf{w}^{(\tau)}\|^2 \le \tau R^2$$
,

which is a contradiction unless

$$\tau \le \frac{R^2}{\rho^2}$$

Bounding the leave-one-out error

Note that the number of errors in the leave-one-out procedure has to be smaller than the number of corrections τ the perceptron makes so

$$I_S[f_{S^i}] = \frac{1}{\ell} \sum_{i=1}^{\ell} \theta(-y_i f_{S^i}(\mathbf{x}_i)) \le \frac{1}{\ell} \frac{R^2}{\rho^2}.$$

One can apply this bound to a SVM that is separable and has no b term.

Bound based upon number of support vectors

The leave-one-out error of a SVM can be bound by the number of support vectors N

$$I_S[f_{S^i}] \le \frac{N}{\ell}.$$

Since the SVM solution has the form

$$f(x) = \sum_{i=1}^{N} c_i K(\mathbf{x}, \mathbf{x}_i),$$

when we remove a nonsupport vector nothing changes so leaving out that point would have no effect on accuracy. If we remove a support vector we simply assume that an error is made.

Bound for SVMs without a b term

For a SVM without a b term trained on ℓ points the solution has the form

$$f(\mathbf{x}) = \sum_{i=1}^{\ell} c_i K(\mathbf{x}, \mathbf{x}_i).$$

For such an algorithm

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \theta(-y_i f_{S^i}(\mathbf{x}_i)) \leq \frac{1}{\ell} \sum_{i=1}^{\ell} \theta(-y_i (f_S(\mathbf{x}_i) - c_i K(\mathbf{x}_i, \mathbf{x}_i))),$$

or

$$f_{S}(\mathbf{x}_{i}) - c_{i}K(\mathbf{x}_{i}, \mathbf{x}_{i}) = \sum_{j \neq i} c_{j}K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$f_{Si}(\mathbf{x}_{i}) \geq \sum_{j \neq i} c_{j}K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$\theta(-y_{i}f_{Si}(\mathbf{x}_{i})) \leq \theta(-y_{i}\sum_{j \neq i} c_{j}K(\mathbf{x}_{i}, \mathbf{x}_{j})).$$

Bound for SVMs without a b term (proof)

The dual maximization problem for the leave-one-out SVM is

$$\max_{\Lambda_{\ell-i}} J_{\ell-i}(\Lambda_{\ell-i}) = \sum_{j\neq i} \alpha_i - \frac{1}{2} \sum_{j,k\neq i} y_j y_k \alpha_j \alpha_k K(\mathbf{x}_i,\mathbf{x}_j).$$

If we knew the optimal α_i^* for the ℓ point problem we could solve the following maximization problem to compute the remaining $\Lambda_{\ell-i}^*$

$$\max_{\Lambda_{\ell-i}} J_{\ell}(\Lambda_{\ell-i}) = J_{\ell-i}(\Lambda_{\ell-i}) - \alpha_i^* y_i \sum_{j \neq i} \alpha_j y_j K(\mathbf{x}_i, \mathbf{x}_j).$$

Bound for SVMs without a b term (proof)

We know the following two facts

$$egin{array}{lll} J_{\ell}(igwedge_{\ell-i}^*) & \geq & J_{\ell}(igwedge_{\ell-i}) \ J_{\ell-1}(igwedge_{\ell-i}^*) & \leq & J_{\ell-1}(igwedge_{\ell-i}) \end{array}$$

where $\Lambda_{\ell-i}^*$ are the optimal $\ell-i$ parameters looking at all ℓ points and $\Lambda_{\ell-i}$ are the optimal $\ell-1$ parameters looking at the $\ell-i$ points.

We can now state the following

$$J_{\ell-i}(\Lambda_{\ell-i}^*) - \alpha_i^* y_i \sum_{j \neq i} \alpha_j^* y_j K(\mathbf{x}_i, \mathbf{x}_j) \geq J_{\ell-i}(\Lambda_{\ell-i}) - \alpha_i^* y_i \sum_{j \neq i} \alpha_j^i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

$$\alpha_i^* y_i \sum_{j \neq i} \alpha_j^i y_j K(\mathbf{x}_i, \mathbf{x}_j) \geq \alpha_i^* y_i \sum_{j \neq i} \alpha_j^* y_j K(\mathbf{x}_i, \mathbf{x}_j) + J_{\ell-i}(\Lambda_{\ell-i}^i)$$

$$-J_{\ell-i}(\Lambda_{\ell-i}^*)$$

$$\geq \alpha_i^* y_i \sum_{j \neq i} \alpha_j^* y_j K(\mathbf{x}_i, \mathbf{x}_j).$$

So

$$egin{aligned} lpha_i^* y_i \sum_{j
eq i} lpha_j^i y_j K(\mathbf{x}_i, \mathbf{x}_j) & \geq & lpha_i^* y_i \sum_{j
eq i} lpha_j^* y_j K(\mathbf{x}_i, \mathbf{x}_j) \ & f_{S^i}(\mathbf{x}_i) & \geq & \sum_{j
eq i} c_j K(\mathbf{x}_i, \mathbf{x}_j). \end{aligned}$$

Bound for SVMs with a b term

For a SVM with a b term trained on ℓ points the solution has the form

$$f(\mathbf{x}) = \sum_{i=1}^{\ell} c_i K(\mathbf{x}, \mathbf{x}_i) + b.$$

For such an algorithm

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \theta(-y_i f_{S^i}(\mathbf{x}_i)) \le |\{i : 2\alpha_i R^2 + \xi_i \ge 1\}|,$$

where $R \ge K(\mathbf{x}, \mathbf{x}) - K(\mathbf{x}, \mathbf{z})$ for all \mathbf{x}, \mathbf{z} .

Here the dual maximization problem is

$$\max_{\Lambda_{\ell-i}} J_{\ell-i}(\Lambda_{\ell-i}) = \sum_{j \neq i} \alpha_i - \frac{1}{2} \sum_{j,k \neq i} y_j y_k \alpha_j \alpha_k K(\mathbf{x}_i, \mathbf{x}_j),$$

subject to $\sum_{j\neq i} y_j \alpha_j = 0$ and $0 \le \alpha \le C$.

Span bound

If the set of support vectors remain unchanged under the leave-one-out procedure then

$$y_i(f_S(\mathbf{x}_i) - f_{S^i}(\mathbf{x}_i)) = \alpha_i S_i^2,$$

where S_i is the distance between the point $\Phi(\mathbf{x}_i)$ and the set Ω_i

$$\Omega_i = \left\{ \sum_{j \neq i, \alpha_i > 0} \lambda_j \Phi(\mathbf{x}_j), \sum_{j \neq i} \lambda_j = 1 \right\}.$$

From this it can be shown

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \theta(-y_i f_{S^i}(\mathbf{x}_i)) = \frac{1}{\ell} \sum_{i=1}^{\ell} \theta(\alpha_i S_i^2 - 1).$$

Worst case analysis for leave-one-out estimator

For certain types of algorithms, k-Nearest Neighbors for example, it was shown that the deviation between the leave-one-out estimator and the expected error is $O\left(\sqrt{\frac{1}{n}}\right)$ but one cannot bound the deviation between to empirical error and expected error.

This prompted the following question about VC classes. Is the leave-one-out estimator a significantly better estimate of the expected error than the empirical error?

A negative result

For VC classes the leave-one-out estimate is not significantly better than the training error as an estimate of the expected error.

For a function class with VC dimension d

$$\mathbb{E}_{S}[I[f_{S}] - I_{S}[f_{S}]] \leq \Theta\left(\sqrt{\frac{d(\ln\frac{2n}{d} + 1) + \ln\frac{9}{\delta}}{n}}\right) + M\delta.$$

For a function class with VC dimension \boldsymbol{d} an implication of stability results is that

$$\mathbb{E}_{S}\left[\frac{1}{n}\sum_{i=1}^{n}V(f_{S^{i}},z_{i})-I_{S}[f_{S}]\right] \leq \Theta\left(\sqrt{\frac{d(\ln\frac{2n}{d}+1)+\ln\frac{9}{\delta}}{n}}\right)+M\delta,$$

$$\mathbb{E}_{S}\left[\frac{1}{n}\sum_{i=1}^{n}V(f_{S^{i}},z_{i})-I[f_{S}]\right] \leq \Theta\left(\sqrt{\frac{d(\ln\frac{2n}{d}+1)+\ln\frac{9}{\delta}}{n}}\right)+M\delta.$$