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About this class

We introduce the idea of cross-validation, leave-one-
out in its extreme form. We show that the leave-one-
out estimate is almost unbiased. We then show a series
of approximations and bounds on the leave-one-out er-
ror that are used for computational efficiency. First
this is shown for least-squares loss then for the SVM
loss function. We close by reporting in a worst case
analysis the leave-one-out error is not a significantly
better estimate of expected error than is the training
error.



Cross-validation

Given St = {(x1,y1), ..., (xp,yp)}. An algorithm is a mapping
from S — fg. We would like to measure the generalization
error.

Cross-validation is one approach to do this. Use ¢ —p
samples to find the function fg,,. Measure the error rate
on the remaining p samples

1
e1 == > V(fg—p(xi),ui).
i€ SP
Repeat this procedure N times and compute

Hopefully e is a good measure of generalization error of

Is-



The leave-one-out error is almost unbiased

For a function f&

Mol = [ V(g0 9)dPCxy)
14

£(8) = 3 V(fgi(xi) v
1=1

Theorem Luntz-Brailovsky
The leave-one-out estimator is almost unbiased

1 (41N _
1 11E/J(S ) = I[fqd.



The leave-one-out error is almost unbiased (proof)

/41
1 1
H—]_]EE(SH_l) — H—lf;V(fgz(xi),yi)dP(Xl,yl)...dP(Xg_H,yg_|_1)

(+1

1
— H—]-/;(V(fSl(Xi),yz')dP(Xi,yi))

dP(x1,y1)...dP(Xi-1, yi-1)dP(Xi+1, Yi+1) ---dP(Xe41, Yot+1)
t+1
1

— H—llE;V(fSi(Xi),yz') = I[fs].



Computing the leave-one-error is in general
expensive

In general to compute the leave-one-out error one needs
to train on ¢ training sets of size ¢ — 1. This can take
alot of time. The following slides show how one can either

upper-bound or approximate the leave-one-out error using
a function trained on all £ samples.



Leave-one-out cross-validation

Given the variational problem

min ch(xo vi)? + M| fl%-

We known the solution has the form

0
fx) =) aK(x,x%;),
i=1

where
c= (K+ M) 1y.

If we call Q = (K + MI)~1 then the leave-out-out error is

1 ¢ 7 Xi 2
Islfgl =1 Y (ylf*gz_i ))

1=1




Leave-one-out cross-validation (proof)

We define the vector y* where 7 = y; if j 4 and yf =
fsi(Xz')-

We can show

¢
foi(xi) = > Qijy;-
=1

J
Now
¢
foi(X) —yi = Qijy; — Vi
j=1
= ) Qijyi + Qiifgi(xi) — y;
J7F1

.

J

¢
= Qijy; — i + Qui(fgi(x:) — i)
—1



So

Leave-one-out cross-validation (proof)

= fo(x;) —yi + Qui(fqi(x:) — v;).

v — fs(x;)
1-Qi

v — fqi(X;) =



Generalized approximate cross-validation

To compute the cross-validation error we need to invert
the matrix K 4+ /\I which can be expensive to compute.

An approximation to the cross vaidation error is

151 (yi — fe(x4))?
Islisil ~7 (11—6—1th)2 |

We can compute the trace of Q from the eigenvalues, u;,
of K + /A1

14
trQ = Z u,é_l.
1=1



Perceptron mistake bound

Assume we are given a data set

{(X17 yl)a eey (Xg, yﬁ)}a

with x; € R" and y; = {—1,1}, which is linearly separable.
This means that there exist w € IR"” such that

(WTXi)yi >0, 1=1,..¢

Theorem: A perceptron can separate a linearly separable
data set in a finite number of steps 7. Moreover, if R is
the bound on the norm of the training vectors and p the
distance of the closest point from a separating hyperplane,
we have



Proof

Let w be the unit normal vector of a hyperplane separating
the ¢ data with no errors and such that the distance of the
closest point is equal to p. For simplicity we assume that
this hyperplane goes through the origin. For the constraint
on the minimal distance we have

yWw'x; >p>0, i=1,..,0°¢.

Starting with w(® = 0, we introduce the following learning
rule:

w1 — w® + yix;

if the point x; is misclassified by w(®, or wittl) = w(®
otherwise.



Proof (cont.)

After = updates we can write
wi = 3" diyix;

where d; denotes the number of times in which x; was mis-
classified over training. If the points are drawn randomly
some of the d; could be zero but we surely have

ZdiZT.

Now, since [|[w| = 1, taking the dot product between w
and w(™ we find the following bound

W > [wOTw] =Y diyix] W] > 7.

Therefore, ||w(?| is bounded from below by a function
growing linearly with 7.



Proof (cont.)

Expanding the square of ||[w(m+D|| we find
W2 = O 2 + 2y w

Now, for all ¢ = 1,...,¢ ||x;|| < R and the cross product is
not positive (because the i-th point has been misclassified).
Therefore, at each step in which a correction takes place,
the square of the norm of w(7) does not increase by more

than RZ2.



Proof (cont.)

Therefore, after T steps ||[w(™]||? is bounded from above by
a function growing linearly with r, or

Iw™|? < TR,
Combining the two bounds we find
m?p” < |WD|? < TR?
which is a contradiction unless

R2
TS?



Bounding the leave-one-out error

Note that the number of errors in the leave-one-out proce-
dure has to be smaller than the the number of corrections
T the perceptron makes so
/4 2
1 1R
IS[fSi] — - Z 9(—yz‘f5i(xz‘)) < Z?

¢ 1=1

One can apply this bound to a SVM that is separable and
has no b term.



Bound based upon number of support vectors

The leave-one-out error of a SVM can be bound by the
number of support vectors N

N
IS[fsi] < ?

Since the SVM solution has the form

N
f(@) =) K(x,x;),
i=1

when we remove a nonsupport vector nothing changes so
leaving out that point would have no effect on accuracy.
If we remove a support vector we simply assume that an
error is made.



Bound for SVMs without a b term

For a SVM without a b term trained on ¢ points the solution
has the form

(
f(x) =) K(x,x;).
i=1

For such an algorithm

/¢ 14
D 0Cuifg(x)) < 5 D 0(-uilFs () — e (xi %)),
1=1 1=1

or
fs(x) — i K(x4,%) = > ¢;K(x4,%5)
J7Ft
foi(xi) > ) ¢;K(x4,%;)
J7F1

0(—yifqi(x:)) < 0(—y; Y c¢;K(x;,%,)).
JjF=i



Bound for SVMs without a b term (proof)

The dual maximization problem for the leave-one-out SVM is

1
max Jo—i(Ae—i) = > - 5 > yiykoonK (xi,%;).
JF Jk#Ei

If we knew the optimal o for the £ point problem we could solve the
following maximization problem to compute the remaining Aj_,

max Jo(Ae—i) = Jo-i(Ne-i) — iy Z oy K (Xi, X;).
j~i



Bound for SVMs without a b term (proof)
We know the following two facts
JN_) = Je(Ne—i)
Jo—1(N_) < Jem1(N—y)

where A;_. are the optimal £ — ¢ paramaters looking at all £ points and
N\y_; are the optimal £ — 1 parameters looking at the ¢ — 1 points.

We can now state the following

Toi(N2) — oy >y K (xi,%x5) > Jpmi(Asi) — afyi Y oy K (xi, x5)

s =i
;Y Z Ly K (xi,x5) > oy Z oy K (xi,%5) + Jo—i(Aj_;)
i =i
—Jo—i(N\o_;)
> afyi ) oy K (xi,%;).
JFi

So
ayi Yoy K (xi, %) > oy Yy odyiK (i, x;)
po i

Z CjK(XZ', Xj).
JF

fsi(x4)

Vv



Bound for SVMs with a b term

For a SVM with a b term trained on ¢ points the solution
has the form

¢
f(x) =) ¢K(x,x;)+0.

=1

For such an algorithm

1 ¢ |
7 N 0(—yifei(x:)) < |{i: 20;R? + & > 1},
1=1
where R > K(x,x) — K(x,z) for all x,z.

Here the dual maximization problem is

1
max Jo—i(Ne—i) = ) o — 5 > yjypojor K (x4, %),
b jFEi JikFi
subject to > j#iyjo; =0 and 0 < a < C.



Span bound

If the set of support vectors remain unchanged under the
leave-one-out procedure then

yi(fo(xi) — foi(x:)) = ;S?,

where S; is the distance between the point ®(x;) and the
set €2;

From this it can be shown

1 L 1 4 5
72 0wifei(xi)) = 3 0(0iSE — 1),
1=1

=1



Worst case analysis for leave-one-out estimator

For certain types of algorithms, k-Nearest Neighbors for ex-
ample, it was shown that the deviation between the leave-

one-out estimator and the expected error is O <\/%> but

one cannot bound the deviation between to empirical error
and expeceted error.

This prompted the following question about VC classes.
Is the leave-one-out estimator a significantly better esti-
mate of the expected error than the empirical error 7



A negative result

For VC classes the leave-one-out estimate is not significantly better
than the training error as an estimate of the expected error.

For a function class with VC dimension d

Es[I[fs] — Is[fs]] < © \/ (n%+1D+Ing + M.

n

For a function class with VC dimension d an implication of stability
results is that

Es [%iV(sz,zi) —Is[fs]| < © /\/d(ln T+ + M,
=1 |
1 ' / d(in 22 +1)+|n—
Eg [;ZV(]CS”,Z@') —I[fs]|] < © \/ + M.
i=1 J




