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About the primer

Goal To briefly review concepts in functional analysis that
will be used throughout the course.* The following
concepts will be described

4.

5.

. Function spaces
. Metric spaces

. Convergence

Measure

Dense subsets

*The definitions and concepts come primarily from “Introductory Real
Analysis” by Kolmogorov and Fomin (highly recommended).



10.

11.

12.

13.

14.

15.

. Separable spaces
. Complete metric spaces
. Compact metric spaces

. Linear spaces

Linear functionals

Norms and semi-norms of linear spaces
Convergence revisited

Euclidean spaces

Orthogonality and bases

Hilbert spaces



16.

17.

18.

19.

20.

Delta functions
Fourier transform
Functional derivatives
Expectations

Law of large numbers



Function space

A function space is a space made of functions. Each
function in the space can be thought of as a point. EXx-
amples:

1. Cla,b], the set of all real-valued continuous functions
in the interval [a,b];

2. Li[a,b], the set of all real-valued functions whose ab-
solute value is integrable in the interval [a, b];

3. L>[a,b], the set of all real-valued functions square inte-
grable in the interval [a, b]

Note that the functions in 2 and 3 are not necessarily
continuous!



Metric space

By a metric space is meant a pair (X, p) consisting of a
space X and a distance p, a single-valued, nonnegative,
real function p(xz,y) defined for all xz,y € X which has the

following three properties:

1. p(x,y) =0 iffx = y;

2. p(z,y) = p(y, ),

3. Triangle inequality: p(x,z) < p(x,y) + p(y, 2)



Examples

1. The set of all real numbers with distance

p(z,y) = |z —y
is the metric space RY.

2. The set of all ordered n-tuples

x=(x1,...,2n)

of real numbers with distance

p(z,y) = J S (@ — yi)?

1=1

is the metric space IR".



3. The set of all functions satisfying the criteria

/fz(x)da: < 00

with distance

p(f1(2), folz)) = \/ [U1(@) = fa(2))?da

is the metric space L>(IR).

4. The set of all probability densities with Kullback-Leibler
divergence

(o1 (a),pae)) = [ 1n P25 ps ()

IS not a metric space. The divergence is not symmetric

p(p1(z),p2(x)) # p(p2(x), p1(x)).



convergence

An open/closed sphere in a metric space S is the set of
points x € IR for which

p(xg,x) <r Open
p(xzg,z) <r closed.

An open sphere of radius € with center xg will be called an
e-neighborhood of xg, denoted Oc(xq).

A sequence of points {xn} = z1,29,...,2n,... i @ metric
space S converges to a point x € S if every neighborhood
Oc(x) of x contains all points x, starting from a certain
integer. Given any € > 0 there is an integer N¢ such that
O¢(x) contains all points x, with n > Ne. {zn} converges
to x iff

lim p(x,xn) = 0.

n—oo



Measure

Throughout the course we will see integrals of the form

[ VU@, ndva) — [ V(@),y) p)ds

v(x) is the measure.

The concept of the measure v(F) of a set F is a natural
extension of the concept

1) The length I(A) of a line segment A

2) The volume V(G) of a space G

3) The integral of a nonnegative function of a region in
space.



Lebesgue measure

Let f be a v-measurable function (it has finite measure)
taking no more than countably many distinct values

Y1,Y2, - Yny ---
Then by the Lebesgue integral of f over the set A denoted

|, f@av,

we mean the quantity
Zyn’/(An)
mn

where

Apn={x:z € A, f(x) = yn},

provided the series is absolutely convergent. The measure
v is the Lebesgue measure.



Lebesgue integral

We can compute the integral

[ 1@)da
by adding up the area under the red rectangles.
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Riemann integral

The more tradition form of the integral is the Riemann
integral. The intuition is that of limit of an infinite sum of
infinitesimally small rectangles,

/Af(w)dx =3 f(zn) Az,

Integrals in the Riemann sense require continuous or piece-
wise continuous functions, the Lebesgue from shown pre-
viously relaxes this. Thus, the integral

1
| f(@)da
0
with f:[0,1] — R defined as

1 if ¢t is rational

f=

0O otherwise
does not exist in the Riemann sense.



Lebesgue-Stieltjes integral

Let F' be a nondecreasing function defined on a closed
interval [a,b] and suppose F' is continuous from the left at
every point [a,b). F is called the generating function of
the Lebesgue-Stieltjes measure vp.

The Lebesgue-Stieltjes integral of a function f is denoted
by

[ 1@y dr)

which is the Lebesgue integral

Jo 7 dp

An example of dvg is a probability density p(x)dx. Then vgp
would correspond to the cumulative distribution function.



Dense

Let A and B be subspaces of a metric space IR. A is said
to be dense in B if A C B. A is the closure of the subset

A. In particular A is said to be everywhere dense in R if
A= R.

A point x € R is called a contact point of a set A €¢ R if
every neighborhood of xz contains at least on point of A.
The set of all contact points of a set A denoted by A is
called the closure of A.



Examples
1. The set of all rational points is dense in the real line.

2. The set of all polynomials with rational coefficients is
dense in CJa,b].

3. Let K be a positive definite Radial Basis Function then
the functions

flz) =) ¢K(z—x;)
i=1

Is dense in Lo.

Note: A hypothesis space that is dense in Lo is a desired
property of any approximation scheme.



Separable

A metric space is said to be separable if it has a countable
everywhere dense subset.

Examples:

1. The spaces R, R", Ly[a,b], and C[a,b] are all separa-
ble.

2. The set of real numbers is separable since the set of
rational numbers is a countable subset of the reals and
the set of rationals is is everywhere dense.



Completeness

A sequence of functions f, is fundamental if Ye > 0 dN¢
such that

Vn and m > Ne, p(fn, fm) < €.

A metric space is complete if all fundamental sequences
converge to a point in the space.

C, L', and L? are complete. That C, is not complete,
instead, can be seen through a counterexample.



Incompleteness of (5

Consider the sequence of functions (n =1,2,...)

—1 if —1<t<—-1/n
On(t) =< nt if —1/n<t<1l/n
1 if 1/n<t<1
and assume that ¢, converges to a continuous function ¢
in the metric of C>. Let

(-1 if —1<t<0O
f(t>_{ 1 ifo<t<1



Incompleteness of (> (cont.)

Clearly,

1/2 1/2 1/2
( / (F(t) — qb(t))th) < ( / (F(t) — %(t))?dt) +( / (6n(t) — qb(t))th) .

Now the |.h.s. term is strictly positive, because f(t) is not
continuous, while for n — oo we have

[ = éu()2dt — o.

Therefore, contrary to what assumed, ¢, cannot converge
to ¢ in the metric of Cb.



Completion of a metric space

Given a metric space R with closure R, a complete metric
space IR* is called a completion of R if R C IR* and

R = R*.
Examples

1. The space of real numbers is the completion of the
space of rational numbers.

2. Let K be a positive definite Radial Basis Function then
Lo is the completion the space of functions

fl@) =) Kz —x).
i=1



Compact spaces

A metric space is compact iff it is totally bounded and
complete.

Let IR be a metric space and € any positive number. Then
a set ACIR is said to be an e-net for a set M C IR if for
every x € M, there is at least one point a € A such that
p(x,a) <e.

Given a metric space IR and a subset M C R suppose M
has a finite e-net for every ¢ > 0. Then M is said to be
totally bounded.

A compact space has a finite e-net for all ¢ > 0.



Examples

1. In Euclidean n-space, R", total boundedness is equiv-
alent to boundedness. If M C IR is bounded then M
IS contained in some hypercube ). We can partition
this hypercube into smaller hypercubes with sides of
length €. The vertices of the little cubes from a finite

vne/2-net of Q.

2. This is not true for infinite-dimensional spaces. The
unit sphere 2 in [» with constraint

oo

Zx,,%=1,

n=1
IS bounded but not totally bounded. Consider the
points

e1 = (1,0,0,...), eo = (0,1,0,0,...), ...,



where the n-th coordinate of e, is one and all others are
zero. T hese points lie on > but the distance between
any two is v/2. So X cannot have a finite e-net with

e <V2/2.

. Infinite-dimensional spaces maybe totally bounded. Let
1 be the set of points x = (xq,...,zn,..) in l> satisfying
the inequalities

1
|£131| < 17 |:U2| < 57“‘7 |£Bn| <

The set Il called the Hilbert cube is an example of
an infinite-dimensional totally bounded set. Given any
e > 0, choose n such that

1
on+1

<€
27



and with each point

x=(x1,..., Tm,..)

IS 1 associate the point

¥ = (x1,...,2n,0,0,...). (1)
Then
s > 1 1 €
— 2
oz, z*) = J Yooz <. > o < 51 < 5
k=n-+1 k=n

The set ™ of all points in I that satisfy (1) is totally
bounded since it is a bounded set in n-space.

. The RKHS induced by a kernel K with an infinite num-
ber of positive eigenvalues that decay exponentially is
compact. In this case, our vector x = (x1, ..., zn,..) CaAN



be written in terms of its basis functions, the eigenvec-
tors of K. Now for the RKHS norm to be bounded

[z1] < pa, |z2| < p2, s 20| < pn, -

and we know that un, = O(n™%). So we have the case
analogous to the Hilbert cube and we can introduce a
point

¥ = (x1,...,2n,0,0,...) (2)

in a bounded n-space which can be made arbitrarily
close to .



Compactness and continuity

A family @ of functions ¢ defined on a closed interval [a, b]
IS said to be uniformly bounded if for K >0

[p(z)| < K
for all z € [a,b] and all ¢ € P.

A family & of functions ¢ is equicontinuous of for any given
e > 0 there exists § > 0 such that |z — y| < § implies

() — P(y)| < e
for all z,y € [a,b] and all ¢ € P.

Arzela’'s theorem: A necessary and sufficient condition for
a family & of continuous functions defined on a closed
interval [a,b] to be (relatively) compact in Cla,b] is that &
IS uniformly bounded and equicontinuous.



Linear space

A set L of elements z,vy,z,... is a linear space if the fol-
lowing three axioms are satisfied:

1. Any two elements z,y € L uniquely determine a third
element in x 4+ y € L called the sum of x and y such
that
(a) z+ vy =y + x (commutativity)

(b) (x+vy)+ z=x2+ (y+ z) (associativity)

(c) An element 0 € L exists for which =z 4+ 0 = « for all
x € L

(d) For every =z € L there exists an element —x € L
with the property x + (—x) = 0



2. Any number o« and any element z € L uniquely deter-
mine an element ax € L called the product such that
(a) a(Bz) = B(ax)

(b)) 1z ==«

3. Addition and multiplication follow two distributive laws
(a)(a+ B))r = ax + Bx
(b)a(x +vy) = ax + ay



Linear functional

A functional, F, is a function that maps another function
to a real-value

F.f—-R

A linear functional defined on a linear space L, satisfies the
following two properties

1. Additive: F(f +g) = F(f) + F(g) for all f,g € L

2. Homogeneous: F(af) = aF(f)



Examples

. Let R™ be a real n-space with elements ¢ = (xq, ..., xn),
and a = (aq,...,an) be a fixed element in IR"”. Then

mn
F(z) = az;
i=1

is a linear functional

. The integral

b
Flf@)] = | f@)p(x)ds

is a linear functional

. BEvaluation functional: another linear functional is the



Dirac delta function

o[ f()] = f(1).

Which can be written

b
SiLF ()] = / F(2)8(z — t)dz.

. BEvaluation functional: a positive definite kernel in a
RKHS

Felf()] = (K, f) = f(1).
This is simply the reproducing property of the RKHS.



Normed space

A normed space is a linear (vector) space N in which a
norm is defined. A nonnegative function || - || is a norm iff
Vf,g € N and aa € R

L lfll =0 and |f|| =0 iff f =0;

2. [ +gll < 171+ llgll;

3. [lafll = laf IfIl-

Note, if all conditions are satisfied except ||f||=0 iff f =0
then the space has a seminorm instead of a norm.



Measuring distances in a normed space

In a normed space N, the distance p between f and g, or
a metric, can be defined as

Note that Vf,g,h € N

1. p(f,g) =0 iff f=g.

2. p(f,9) = p(g, f).

3. p(f,h) < p(f,g) + p(g,h).



Example: continuous functions

A norm in Cla,b] can be established by defining
[f]l = max |f(©)].

a<t<b
The distance between two functions is then measured as

p(f,9) = max |g(t) — f(2)].

a<t<b
With this metric, C[a,b] is denoted as C.



Examples (cont.)

A norm in Lq[a,b] can be established by defining

b
Il = [ 1F®lat

The distance between two functions is then measured as

b
p(f.9) = [ lg(®) = f(D)ldt.
With this metric, Lq[a, b] is denoted as L.



Examples (cont.)

A norm in Cs[a, b] and L»[a, b] can be established by defining

1/2
il =/ Pow)

The distance between two functions now becomes

b 1/2
p(f.9) = ( / <g<t>—f<t>>2dt) .

With this metric, Cs[a,b] and Ls[a,b] are denoted as C»
and Lo respectively.



Convergence revisited

A sequence of functions f, converge to a function f almost
everywhere iff

im fu(z) = f(x)

n——+oo

A sequence of functions f, converge to a function f in
measure iff Ve > 0

m e |fule) — f(2)| > e} =0.

I
n——+oo

A sequence of functions f,, converge to a function f uni-
formly iff

lim_sup(fu(@) — f(2)) =0



Relationship between different types of
convergence

In the case of bounded intervals: uniform convergence (C)
implies

e convergence in the quadratic mean (L) which implies
convergence in the mean (Lq) which implies conver-
gence in measure,

e almost everywhere convergence which implies conver-
gence in measure.



Relationship between different types of
convergence

That uniform convergence implies all other type of con-
vergence is clear.

Consider L, over a bounded interval of width A. Keeping
in mind that the function g = 1 belongs to Lo and that
lgllL, = A, convergence in the quadratic mean implies con-
vergence in the mean because for every function f € Lo we
have

£l = [ 1flde = [ 1£]- 1de < |Ifllz; [12llzs = Allfllc,
and hence that f € L.



Any convergence implies convergence in
measure

Convergence in measure is obtained by convergence in the
mean through Chebyshev’'s inequality:

For any real random variable X and ¢t > 0O,

P(|X| >t) < E[X?/#3].

The proof that almost everywhere convergence implies
convergence in measure is somewhat more complicated.



Almost everywhere convergence does not
imply convergence in the (quadratic) mean

Over the interval [0,1] let f, be

fn:{n x € (0,1/n]

O otherwise

Clearly f, — 0 for all x € [0,1]. Note that each f, is
not a continuous function and that the convergence is not
uniform (the closer the x to 0, the larger n must be for
fn(x) = 0). However,

1
/ | fu(x)|dz = 1 for all n,
0

in both the Riemann or the Lebesgue sense.



Convergence in the quadratic mean does
not imply convergence at all!

Over theinterval (0, 1], foreveryn =1,2,...,andi=1,....n
let
i—1 i
=]l - <Tsy
‘ O otherwise
Clearly the sequence

1 2 2 1
f17f17f27'“7f{lj>f§7'“ 77:—17f77;7 27[1—'_ VARRRR)

converges to O both in measure and in the quadratic mean.
However, the same sequence does not converge for any z!



Convergence in probability and almost
surely

Any event with probability 1 is said to happen almost
surely. A sequence of real random variables Y, converges
almost surely to a random variable Y iff P(Y, — Y) = 1.

A sequence Y, converges in probability to Y iff for every

Convergence almost surely implies convergence in proba-
bility.

A sequence X1, ...X, satisfies the strong law of large num-
bers if for some constant c, % 1 X; converges to c almost
surely. The sequence satisfies the weak law of large num-
bers iff for some constant c, %Z?’:lXi converges to c in

probability.



Euclidean space

A Euclidean space is a linear (vector) space E in which a
dot product is defined. A real valued function (-,-) is a dot
product iffVf,g,h € E and a € IR

1. (f,9) =(g,f)
2. (f+g,h) =(f,h")+ (g,h) and (af,g) = a(f,9g);

3. (f,f)=0and (f,f) =0 iff f=0.

A Euclidean space becomes a normed linear space when
equipped with the norm

1FIF =/ (f5 )



Orthogonal systems and bases

A set of nonzero vectors {zn} in a Euclidean space FE is
said to be an orthogonal system if

(za,z3) =0 for a# 3

and an orthonormal system if

O for a#%p
1 for a=g0.

(:UOM ZB@)
(33047 xﬂ)

An orthogonal system {z,} is called an orthogonal basis
if it is complete (the smallest closed subspace containing
{xa} is the whole space E). A complete orthonormal sys-
tem is called an orthonormal basis.



Examples

1. R™ is a real n-space, the set of n-tuples z = (1, ..., zn),
y = (y1,.--,yn). If we define the dot product as

n
(z,y) = ) zy;
i=1

we get Euclidean n-space. The corresponding norms
and distances in R" are

= |3 a2
1E4l \Z;
p(x,y) =z —yl| = | (z;—y)?
\i=1



T he vectors

e — (1,0,0,....,0)
e — (0,1,0,....,0)
€n — (0,0, O,...., 1)

form an orthonormal basis in R".

. The space Il with elements =z = (z1, 22, ..., xTn,....), Yy =
(Y1,Y2; -3 Yns =), --., Where

- 2 - 2
Z x; < 00, Z Yi < 00, vy uny

becomes an infinite-dimensional Euclidean space when
equipped with the dot product

©.@)
(z,y) = ) zy;.
i=1



T he simplest orthonormal basis in [, consists of vectors

e1 — (1,0,0,0,...)
€o = (0,1,0,0,...)
e = (0,0,1,0,...)
ea — (0,0,0,1,...)

there are an infinite number of these bases.

. The space Cs|a, b] consisting of all continuous functions
on [a,b] equipped with the dot product

(1.0 = [ 1Dt

IS another example of Euclidean space.



An important example of orthogonal bases in this space
IS the following set of functions

2mnt . 2mnt
1, cos , Sin
b—a b—a

(n=1,2,...).



Hilbert space

A Hilbert space is a Euclidean space that is complete,
separable, and generally infinite-dimensional.

A Hilbert space is a set H of elements f,g,... for which
1. H is a Euclidean space equipped with a scalar product
2. H is complete with respect to metric p(f,g9) = ||f — 9]

3. H is separable (contains a countable everywhere dense
subset)

4. (generally) H is infinite-dimensional.

[> and L, are examples of Hilbert spaces.



The § function

We now consider the functional which returns the value of
f € C at the location t (an evaluation functional),

Df] = f(2).

Note that this functional is degenerate because it does not
depend on the entire function f, but only on the value of
f at the specific location t.

The §(t) is not a functional but a distribution.



The 6 function (cont.)

The same functional can be written as

ol =f) = [ " 7()5(s — 1)ds.

No ordinary function exists (in L») that behaves like §(t),
one can think of §(¢t) as a function that vanishes for t = 0O
and takes infinite value at ¢t =0 in such a way that

/O:O S()dt = 1.



The 6 function (cont.)

The § function can be seen as the limit of a sequence of
ordinary functions. For example, if

r() =~ (U) - UGt~ )

IS a rectangular pulse of unit area, consider the limit

.Igi_r]g /o:o f(s)re(s —t)ds.

By definition of r. this gives

1 t+e€
lim — f(s)ds = f(t)

e—0 € J¢
because f is continuous.



Fourier Transform

The Fourier Transform of a real valued function f € L, is
the complex valued function f(w) defined as

~ +o0 .
Flf ()] = Fw) = / F(x) e 7“mdg.

The FT f can be thought of as a representation of the
information content of f(x). The original function f can
be obtained through the inverse Fourier Transform as

f(z) = i/Jroo f(w) " dw.

27 —00



Properties

1 w
fla) & F (g)
INOIIRA®
F(t) & 2nf(—w)
flt—to) & F(w)e o
F()elot o F(w—wp)
TIO o oy )
(i) e T
| @Rt -Ddr & F@)Pw)
| F@stHnar e |FW)P



Properties

The box and the sinc

f(t) = 1if —a<t<a and 0 otherwise
2sin
Flw) = | (aw).

w




Properties

The Gaussian

F(t) = et

F(w) ge_w2/4a.

0 I
—————



Properties

The Laplacian and Cauchy distributions

&) = e
o) = 2a

a2_|_w2’




Fourier Transform in the distribution sense

With due care, the Fourier Transform can be defined in
the distribution sense. For example, we have

o /(x) «— 1

e cos(wozr) <= 7(6(w — wo) + d(w + wo))

o sin(woxr) <— jr(6(w+ wo) — I(w — wo))

e U(x) <— nd(w) —j/w

¢ 1| — —2/w?



Parseval’s formula

If f is also square integrable, the Fourier Transform leaves
the norm of f unchanged. Parseval's formula states that

[ @i = o [T P



Fourier Transforms of functions and
distributions

The following are Fourier transforms of some functions and
distributions

o f(z)=6(z) = flw)=1

o f(x) = cos(woz) <= f(w)=n(d(w—wo)+ d(w ~+ wo))
o f(z) =sin(wor) <= f(w) = in(d(w + wo) — d(w — wo))
o f(2) =U(z) = [(w)=md(w) —i/w

o f(z) =|z] <= [f(w)=-2/u2



Functional differentiation

In analogy with standard calculus, the minimum of a func-
tional can be obtained by setting equal to zero the deriva-
tive of the functional. If the functional depends on the
derivatives of the unknown function, a further step is re-
quired (as the unknown function has to be found as the
solution of a differential equation).



Functional differentiation

The derivative of a functional ®[f] is defined
D[f]l _ . PLQ@) + hd(t — )] — P[f(H)]

= |im
Df(s)  h=0 h
Note that the derivative depends on the location s. For

example, if ®[f] = [T f(t)g(t)dt

ch[f] . +oo _
D = | 93— syt = gs).




Intuition

Let f:[a,b] ¥R, a =21 and b = zx. The intuition behind
this definition is that the functional ®[f] can be thought
of as the limit for N — oo of the function of N variables

¢N:¢N(f17f27'“7fN)
with f1 = f(z1), f2 = f(z2), ... fv = f(zN).

For N — oo, ® depends on the entire function f. The
dependence on the location brought in by the ¢ function
corresponds to the partial derivative with respect to the
variable f.



Functional differentiation (cont.)

If ®[f] = f(t), the derivative is simply

DO[f] _ Df(t)
Df(s) Df(s)

Similarly to ordinary calculus, the minimum of a functional

d[f] is obtained as the function solution to the equation

DO[f] _
D (s)

= 6(t — s).

0.




Random variables

We are given a random variable &€ ~ F'. To define a random
variable you need three things:

1) a set to draw the values from, we'll call this

2) a o-algebra of subsets of 2, we'll call this B

3) a probability measure F on B with F((2) =1

So (2,8, F) is a probability space and a random variable
iS @ masurable function X : 2 —- R.



Expectations
Given a random variable & ~ F' the expectation is

Ef = / ¢dF.

Similarly the variance of the random variable ¢2(¢) is

var(¢) = E(¢ — E¢)~.



Law of large numbers

The law of large numbers tells us:

1 d
im 7 2 ez = Bevlip@zy

{—00

If Yo — oo the Central Limit Theorem states:
Vi3SI - EI)
vvarl

» N(0,1),

which implies
1 k
— I — IEI| ~ —.
P2 v
If /o0 — ¢ the Central Limit Theorem implies

1 k
X I-El~ g



