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About this class


Goal To introduce a particularly useful family of hypoth­

esis spaces called Reproducing Kernel Hilbert Spaces 

(RKHS) and to derive the general solution of Tikhonov 

regularization in RKHS. 



Here is a graphical example for

generalization: given a certain number of


samples...


f(x) 

x 



suppose this is the “true” solution...


f(x) 

x 



... but suppose ERM gives this solution!


f(x) 

x 



Regularization


The basic idea of regularization (originally introduced in­


dependently of the learning problem) is to restore well­


posedness of ERM by constraining the hypothesis space


H. The direct way – minimize the empirical error subject 

to f in a ball in an appropriate normed functional space 

H – is called Ivanov regularization. The indirect way is 

Tikhonov regularization (which is not ERM). 



Ivanov regularization over normed spaces


ERM finds the function in H which minimizes


n1 � 
V (f(xi), yi) 

n i=1 

which in general – for arbitrary hypothesis space H – is 

ill-posed. Ivanov regularizes by finding the function that 

minimizes 

n1 � 
V (f(xi), yi) 

n i=1 

while satisfying 

2�f�H ≤ A, 

with � · �, the norm in the normed function space H




Function space


A function space is a space made of functions. Each 

function in the space can be thought of as a point. Ex­

amples: 

1. C[a, b], the set of all real-valued continuous functions 

in the interval [a, b]; 

2. L1[a, b], the set of all real-valued functions whose ab­

solute value is integrable in the interval [a, b]; 

3. L2[a, b], the set of all real-valued functions square inte­

grable in the interval [a, b] 



Normed space


A normed space is a linear (vector) space N in which a 

norm is defined. A nonnegative function � · � is a norm iff 

∀f, g ∈ N and α ∈ IR 

1. �f� ≥ 0 and �f� = 0 iff f = 0;


2. �f + g� ≤ �f� + �g�; 

3. �αf� = |α| �f�. 

Note, if all conditions are satisfied except �f� = 0 iff f = 0 

then the space has a seminorm instead of a norm. 



� 

Examples


1. A norm in C[a, b] can be established by defining


�f� = max |f(t)|. 
a≤t≤b 

2. A norm in L1[a, b] can be established by defining 

� b 
�f� = |f(t)|dt. 

a 

3. A norm in L2[a, b] can be established by defining 

� b 
�1/2 

�f� = f2(t)dt . 
a 



From Ivanov to Tikhonov regularization


Alternatively, by the Lagrange multipler’s technique, Tikhonov 

regularization minimizes over the whole normed function 

space H, for a fixed positive parameter λ, the regularized 

functional 
n1 � 

V (f(xi), yi) + λ�f�2 
H. (1) 

n i=1 

In practice, the normed function space H that we will con­

sider, is a Reproducing Kernel Hilbert Space (RKHS). 



Lagrange multiplier’s technique


Lagrange multiplier’s technique allows the reduction of the 

constrained minimization problem 

Minimize I(x)

subject to Φ(x) ≤ A (for some A)


to the unconstrained minimization problem 

Minimize J(x) = I(x) + λΦ(x) (for some λ ≥ 0) 



� 

Hilbert space


A Hilbert space is a normed space whose norm is induced 

by a dot product �f, g� by the relation 

�f� = �f, f�. 

A Hilbert space must also be complete and separable.


• Hilbert spaces generalize the finite Euclidean spaces IRd , 

and are generally infinite dimensional. 

• Separability implies that Hilbert spaces have countable 

orthonormal bases. 



� 

� 
� 
� 

Examples


• Euclidean d-space. The set of d-tuples x = (x1, ..., xd) 

endowed with the dot product 

d 

�x, y� = xiyi. 
i=1 

The corresponding norm is 

� d 
� 2�x� = � xi . 

i=1 

The vectors 

e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . . , ed = (0,0, . . . ,1) 

form an orthonormal basis, that is �ei, ej� = δij. 



Examples (cont.)


• The function space L2[a, b] consisting of square integrable 

functions. The norm is induced by the dot product 

� b 
�f, g� = f(t)g(t)dt. 

a 

It can be proved that this space is complete and separable.


An important example of orthogonal basis in this space is 

the following set of functions 

2πnt 2πnt 
1, cos , sin (n = 1,2, ...). 

b − a b − a 

• C[a, b] and L1[a, b] are not Hilbert spaces. 



Evaluation functionals


A linear evaluation functional over the Hilbert space of 

functions H is a linear functional Ft : H → IR that evaluates 

each function in the space at the point t, or 

Ft[f ] = f(t) 

The functional is bounded if there exists a M s.t. 

|Ft[f ]| = |f(t)| ≤ M�f�H ∀f ∈ H 

where � · �H is the norm in the Hilbert space of functions. 

• we don’t like the space L2[a, b] because the its evaluation 

functionals are unbounded. 



Evaluation functionals in Hilbert space


The evaluation functional is not bounded in the familiar 

Hilbert space L2([0, 1]), no such M exists and in fact ele­

ments of L2([0, 1]) are not even defined pointwise. 
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RKHS


Definition A (real) RKHS is a Hilbert space of real-valued 

functions on a domain X (closed bounded subset of IRd) 

with the property that for each t ∈ X the evaluation func­

tional Ft is a bounded linear functional. 



Reproducing kernel (rk)


If H is a RKHS, then for each t ∈ X there exists, by the 

Riesz representation theorem a function Kt of H (called 

representer of evaluation) with the property – called by 

Aronszajn – the reproducing property 

Ft[f ] = �Kt, f�K = f(t). 

Since Kt is a function in H, by the reproducing property, 

for each x ∈ X 

Kt(x) = �Kt, Kx�K 

The reproducing kernel (rk) of H is 

K(t, x) := Kt(x) 

. 



� 

Positive definite kernels


Let X be some set, for example a subset of IRd or IRd itself. 

A kernel is a symmetric function K : X × X → IR. 

Definition


A kernel K(t, s) is positive definite (pd) if 

n 

cicjK(ti, tj) ≥ 0 
i,j=1 

for any n ∈ IN and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ IR. 



RKHS and kernels


The following theorem relates pd kernels and RKHS. 

Theorem 

a) For every RKHS the rk is a positive definite kernel on.


b) Conversely for every positive definite kernel K on


X × X there is a unique RKHS on X with K as its rk




Sketch of proof


a) We must prove that the rk K(t, x) = �Kt, Kx�K is sym­

metric and pd. 

• Symmetry follows from the symmetry property of dot 

products 

�Kt, Kx�K = �Kx, Kt�K 

• K is pd because 

n n 
� 

cicjK(ti, tj) = 
� 

cicj�Kti
, Ktj

�K = || 
� 

cjKtj
||2 

K ≥ 0. 
i,j=1 i,j=1 



� 

� 
� 

Sketch of proof (cont.)


b) Conversely, given K one can construct the RKHS H as 

the completion of the space of functions spanned by the 

set {Kx|x ∈ X} with a inner product defined as follows. 

The dot product of two functions f and g in span{Kx|x ∈ 

X} 

s 

f(x) = αiKxi(x) 
i=1 

s

g(x) = �(x)βiKx
i=1 

i 

is by definition 

s s� 

�f, g�K = 
� � 

αiβjK(xi, x � j). 
i=1 j=1 



Examples of pd kernels


Very common examples of symmetric pd kernels are


•	 Linear kernel 

�K(x, x 
�) = x · x 

• Gaussian kernel 

�x−x 
��2 

K(x, x 
�) = e σ2 , σ > 0 

•	 Polynomial kernel 

�K(x, x 
�) = (x · x + 1)d, d ∈ IN 

For specific applications, designing an effective kernel is a 

challenging problem. 



Historical Remarks


RKHS were explicitly introduced in learning theory by Girosi 

(1997). Poggio and Girosi (1989) introduced Tikhonov 

regularization in learning theory and worked with RKHS 

only implicitly, because they dealt mainly with hypothesis 

spaces on unbounded domains, which we will not discuss 

here. Of course, RKHS were used much earlier in approx­

imation theory (eg Wahba, 1990...) and computer vision 

(eg Bertero, Torre, Poggio, 1988...). 



Back to Tikhonov Regularization


The algorithms (Regularization Networks) that we want to


study are defined by an optimization problem over RKHS,


n1 � 
fS = argmin V (f(xi), yi) + λ�f�2 

K
f∈H n i=1 

where the regularization parameter λ is a positive number, 

H is the RKHS as defined by the pd kernel K(·, ·), and 

V (·, ·) is a loss function. 



Norms in RKHS, Complexity, and

Smoothness


We measure the complexity of a hypothesis space using 

the the RKHS norm, �f�K. 

The next result illustrates how bounding the RKHS norm 

corresponds to enforcing some kind of “simplicity” or smooth­

ness of the functions. 



� � � �

X 

Regularity of functions in RKHS


Functions over X, in the RKHS H induced by a pd kernel 

K, fulfill a Lipschitz-like condition, with Lipschitz constant 

given by the norm �f�K. 

In fact, by the Cauchy-Schwartz inequality, we get ∀x, x� ∈ 

|f(x) − f(x �)| = |�f, Kx − K ��K| ≤ �f�K d(x, x �),x

with the distance d over X, defined by 

d2(x, x ) = K(x, x) − 2K(x, x ) + K(x , x ). 



A linear example


Our function space is 1-dimensional lines 

f(x) = w x and K(x, xi) ≡ x xi. 

For this kernel 

� � � � �|2d2(x, x ) = K(x, x) − 2K(x, x ) + K(x , x ) = |x − x , 

and using the RKHS norm 

�f�2 = �f, f�K = �Kw, Kw�K = K(w, w) = w 2 
K 

so our measure of complexity is the slope of the line. 

We want to separate two classes using lines and see how the magnitude 
of the slope corresponds to a measure of complexity. 

We will look at three examples and see that each example requires 

more complicated functions, functions with greater slopes, to separate 

the positive examples from negative examples. 



A linear example (cont.)


here are three datasets: a linear function should be used to 

separate the classes. Notice that as the class distinction 

becomes finer, a larger slope is required to separate the 

classes. 
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Again Tikhonov Regularization


The algorithms (Regularization Networks) that we want to


study are defined by an optimization problem over RKHS,


n1 � 
fS = argmin V (f(xi), yi) + λ�f�2 

K
f∈H n i=1 

where the regularization parameter λ is a positive number, 

H is the RKHS as defined by the pd kernel K(·, ·), and 

V (·, ·) is a loss function. 



Common loss functions


The following two important learning techniques are im­


plemented by different choices for the loss function V (·, ·)


•	 Regularized least squares (RLS) 

V = (y − f(x))2 

•	 Support vector machines for classification (SVMC) 

V = |1 − yf(x)|+ 

where 

(k)+ ≡ max(k, 0). 



The Square Loss


For regression, a natural choice of loss function is the 

square loss V (f(x), y) = (f(x) − y)2. 
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The Hinge Loss
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Existence and uniqueness of minimum


If the positive loss function V (·, ·) is convex with respect 

to its first entry, the functional 

n1 � 
Φ[f ] = V (f(xi), yi) + λ�f�2 

K n i=1 

is strictly convex and coercive, hence it has exactly one 

local (global) minimum. 

Both the squared loss and the hinge loss are convex.


On the contrary the 0-1 loss 

V = Θ(−f(x)y), 

where Θ(·) is the Heaviside step function, is not convex.




� 

The Representer Theorem


The minimizer over the RKHS H, fS, of the regularized 

empirical functional 

IS[f ] + λ�f�2 
K, 

can be represented by the expression


n 

fS(x) = ciK(xi, x), 
i=1 

for some n-tuple (c1, . . . , cn) ∈ IRn . 

Hence, minimizing over the (possibly infinite dimensional) 

Hilbert space, boils down to minimizing over IRn . 



� � � 

Sketch of proof


Define the linear subspace of H, 

H0 = span({Kxi}i=1,...,n ) 

Let H⊥ 
0 be the linear subspace of H, 

H⊥ = {f ∈ H|f(xi) = 0, i = 1, . . . , n}.0 

From the reproducing property of H, ∀f ∈ H⊥ 
0 

�f, ciKxi�K = ci�f, Kxi�K = cif(xi) = 0. 
i i i 

H⊥ 
0 is the orthogonal complement of H0. 



Sketch of proof (cont.)


Every f ∈ H can be uniquely decomposed in components 

along and perpendicular to H0: f = f0 + f⊥ .0 

Since by orthogonality 

0 �
2

0 �
2�f0 + f⊥ = �f0�

2 + �f⊥ , 

and by the reproducing property 

IS[f0 + f⊥ 
0 ] = IS[f0], 

then 

2 2IS[f0] + λ�f0�K ≤ IS[f0 + f0 
⊥] + λ�f0 + f⊥ 

0 �K. 

Hence the minimum fλ = f0 must belong to the linear S 
space H0. 



Applying the Representer Theorem


Using the representer theorem the minimization problem 

over H 

min IS[f ] + λ�f�2 
K

f∈H 

can be easily reduced to a minimization problem over IRn 

min g(c)

c∈IRn 

for a suitable function g(·). 

If the loss function is convex, then g is convex, and finding


the minimum reduces to computing the subgradient of g.


In particular, if the loss function is differentiable (eg. squared 

loss), we just have to compute (and set to zero) the gra­

dient of g. 



Tikhonov Regularization for RLS and SVMs


In the next two classes we will study Tikhonov regulariza­

tion with different loss functions for both regression and 

classification. We will start with the square loss and then 

consider SVM loss functions. 


