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About this class


Goal To analyze the limits of learning from examples in 

high dimensional spaces. To introduce the semi-supervised 

setting and the use of unlabeled data to learn the in­

trinsic geometry of a problem. To define Riemannian 

Manifolds, Manifold Laplacians, Graph Laplacians. To 

introduce a new class of algorithms based on Manifold 

Regularization (LapRLS, LapSVM). 



Unlabeled data


Why using unlabeled data? 

•	 labeling is often an “expensive” process


•	 semi-supervised learning is the natural setting for hu­

man learning 



Semi-supervised setting


u i.i.d. samples drawn on X from the marginal distribution 

p(x) 

{x1, x2, . . . , xu}, 

only n of which endowed with labels drawn from the con­

ditional distributions p(y|x) 

{y1, y2, . . . , yn}. 

The extra u −n unlabeled samples give additional informa­

tion about the marginal distribution p(x). 



The importance of unlabeled data




Curse of dimensionality and p(x)


Assume X is the D-dimensional hypercube [0, 1]D . The 

worst case scenario corresponds to uniform marginal dis­

tribution p(x). 

Two perspectives on curse of dimensionality:


•	 As d increases, local techniques (eg nearest neighbors) 

become rapidly ineffective. 

•	 Minimax results show that rates of convergence of em­

pirical estimators to optimal solutions of known smooth­

ness, depend critically on D 



Curse of dimensionality and k-NN


•	 It would seem that with a reasonably large set of train­

ing data, we could always approximate the conditional 

expectation by k-nearest-neighbor averaging. 

•	 We should be able to find a fairly large set of observa­

tions close to any x ∈ [0, 1]D and average them. 

•	 This approach and our intuition breaks down in high 

dimensions. 



Sparse sampling in high dimension


Suppose we send out a cubical neighborhood about one 

vertex to capture a fraction r of the observations. Since 

this corresponds to a fraction r of the unit volume, the 

expected edge length will be 

1 
eD(r) = rD. 

Already in ten dimensions e10(0.01) = 0.63, that is to 

capture 1% of the data, we must cover 63% of the range 

of each input variable! 

No more ”local” neighborhoods!




Distance vs volume in high dimensions
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Curse of dimensionality and smoothness


∗Assuming that the target function f (in the squared loss 

case) belongs to the Sobolev space 

Ws 
2([0, 1]D) = {f ∈ L2([0, 1]D)| �ω�2s|f̂(ω)|2 < +∞} 

ω∈Zd 

∗it is possible to show that 

s 
sup IES(I[fS] − I[f ∗ ]) > Cn −D 

µ,f∗∈W2 
s 

More smoothness s ⇒ faster rate of convergence


Higher dimension D ⇒ slower rate of convergence


∗ A Distribution-Free Theory of Nonparametric Regression, Gyorfi 



Intrinsic dimensionality


Raw format of natural data is often high dimensional, but 

in many cases it is the outcome of some process involving 

only few degrees of freedom. 

Examples: 

•	 Acoustic Phonetics ⇒ vocal tract can be modelled as a sequence 
of few tubes. 

•	 Facial Expressions ⇒ tonus of several facial muscles control facial 
expression. 

•	 Pose Variations ⇒ several joint angles control the combined pose 
of the elbow-wrist-finger system. 

Smoothness assumption: y’s are “smooth” relative to


natural degrees of freedom, not relative to the raw format.




Manifold embedding
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Riemannian Manifolds


A	 d-dimensional manifold 


 

M = Uα 

α 

is a mathematical object that generalized domains in IRd . 

Each one of the “patches” Uα which cover M is endowed with a system 

of coordinates 

α : Uα → IRd. 

If two patches Uα and Uβ, overlap, the transition functions 

β ◦ α−1 : α(Uα Uβ) → IRd 

must be smooth (eg. infinitely differentiable). 

•	 The Riemannian Manifold inherits from its local system of co­
ordinates, most geometrical notions available on IRd: metrics, 
angles, volumes, etc. 



Manifold’s charts




Differentiation over manifolds


Since each point x over M is equipped with a local system 

of coordinates in IRd (its tangent space), all differential 

operators defined on functions over IRd, can be extended 

to analogous operators on functions over M. 

∂Gradient: �f(x) = (
∂x1 

f(x), . . . , ∂ f(x)) ⇒ �Mf(x)
∂xd 

Laplacian: �f(x) = − ∂2 
f(x) − · · · − ∂2 

f(x) ⇒ �Mf(x)
∂x2 ∂x2 

1 d 



� 

�	 � 

Measuring smoothness over M


Given f : M → IR


•	 �Mf(x) represents amplitude and direction of variation 

around x 

•	 S(f) = M��Mf�2 is a global measure of smoothness 

for f 

•	 Stokes’ theorem (generalization of integration by parts) 

links gradient and Laplacian 

S(f) = ��Mf(x)�2 = f(x)�Mf(x) 
M M 



� 

Example: the circle S1


M: circle with angular coordinate θ ∈ [0, 2π) 

∂ ∂2 

�Mf = f, �Mf = − f 
∂θ ∂θ2

∂ � 2π ∂2 
integration by parts: 

� 2π 
∂θ

f(θ) 
�2 

dθ = − 0 f(θ)
∂θ2f(θ)dθ 0 

eigensystem of �M: �Mφk = λkφk 

φk(θ) = sin kθ, cos kθ, λk = k2 k ∈ IN 



� 
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∗
Manifold regularization


A new class of techniques which extend standard Tikhonov regu­
larization over RKHS, introducing the additional regularizer �f�2 

I = 
f(x)�Mf(x) to enforce smoothness of solutions relative to the un-

M 
derlying manifold 

n	 � 

1∗ f	 = argmin V (f(xi), yi) + λA�f�
2 
K	 + λI f�Mf 

f∈H n 
i=1	 M 

•	 λI controls the complexity of the solution in the intrinsic geometry 
of M. 

•	 λA controls the complexity of the solution in the ambient space. 

∗Belkin, Niyogi, Sindhwani, 04 
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Manifold regularization (cont.)


Other natural choices of � · �2 exist I 

• Iterated Laplacians 
M 

f�s f and their linear combinations. These M
smoothness penalties are related to Sobolev spaces 

f(x)�s 
Mf(x) ≈ �ω�2s|f̂(ω)|2 

ω∈Zd 

• Frobenius norm of the Hessian (the matrix of second derivatives 
∗of f) 

• Diffusion regularizers 
M 

fet�(f). The semigroup of smoothing 

operators G = {e−t�M|t > 0} corresponds to the process of diffu­
sion (Brownian motion) on the manifold. 

∗Hessian Eigenmaps; Donoho, Grimes 03 



� 

Laplacian and diffusion


•	 If M is compact, the operator �M has a countable 

sequence of eigenvectors φk (with non-negative eigen­

values λk), which is a complete system of L2(M). If M 

is connected, the constant function is the only eigen­

vector corresponding to null eigenvalue. 

•	 The function of operator e−t�M, is defined by the 

eigensystem (e−tλk, φk), k ∈ IN. 

•	 the diffusion stabilizer �f�2 = M fet�M(f) is the squared I 
norm of RKHS with kernel equal to Green’s function 

of heat equation 

∂T 
=	 −�MT 

∂t 



� 
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Laplacian and diffusion (cont.)


1. By Taylor expansion of T (x, t) around t = 0 

∂ 1 ∂k 

T (x, t) = T (x, 0) + t T (x, 0) + · · · + tk T (x, 0) + . . . 
∂t k ∂tk 

−t� � � � = e T (x, 0) = Kt(x, x )T (x , 0)dx� = LKT (x , 0) 

2. For small t > 0, the Green’s function is a sharp gaussian 

Kt(x, x �) ≈ e −
�x−x��2 

t 

3. Recalling relation of integral operator LK and RKHS norm, we get 

�f�2 
I = f et�(f) = f L−1 

K (f) = �f�2 
K 
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An empirical proxy of the manifold


We cannot compute the intrinsic smoothness penalty


�f�2 
I = f(x)�Mf(x) 

M 

because we don’t know the manifold M and the embedding


Φ : M → IRD. 

But we assume that the unlabeled samples are drawn


i.i.d. from the uniform probability distribution over M


and then mapped into IRD by Φ 



Neighborhood graph


Our proxy of the manifold is a weighted neighborhood 

graph G = (V, E, W ), with vertices V given by the points 

{x1, x2, . . . , xu}, edges E defined by one of the two follow­

ing adjacency rules 

• connect xi to its k nearest neighborhoods 

• connect xi to �-close points 

and weights Wij associated to two connected vertices 

�xi−xj�
2 

= e �Wij 
− 

Note: computational complexity O(u2)




Neighborhood graph (cont.)
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The graph Laplacian


The graph Laplacian over the weighted neighborhood graph 

(G, E, W ) is the matrix 

Lij = Dii − Wij, Dii = Wij. 
j 

L is the discrete counterpart of the manifold Laplacian �M 

n � 

fTLf = Wij(fi − fj)
2 ≈ ��f�2dp. 

i,j=1 M 

Analogous properties of the eigensystem: nonnegative spec­

trum, null space 

Looking for rigorous convergence results




∗
A convergence theorem


Operator L: “out-of-sample extension” of the graph Lapla­

cian L 

� 
�x−xi�

2 

L(f)(x) = (f(x) − f(xi))e 
− 

� x ∈ X, f : X → IR 
i 

Theorem: Let the u data points {x1, . . . , xu} be sam­

pled from the uniform distribution over the embedded d­
1dimensional manifold M. Put � = u−α, with 0 < α < 2+d

. 

Then for all f ∈ C∞ and x ∈ X, there is a constant C, s.t. 

in probability, 

−d+2 
� 2 

lim C L(f)(x) = �Mf(x). 
u→∞ u 

Note: also stronger forms of convergence have been proved.


∗Belkin, Niyogi, 05 



∗
Laplacian-based regularization algorithms


Replacing the unknown manifold Laplacian with the graph 

Laplacian �f�2 
I = 1

2f
TLf , where f is the vector [f(x1), . . . , f(xu)], u

we get the minimization problem


n 
∗ 1 �


f = argmin V (f(xi), yi) + λA�f�
2 λI 

fTLf

f∈H n

i=1	
K + 

u2

•	 λI = 0: standard regularization (RLS and SVM) 

•	 λA → 0: out-of-sample extension for Graph Regular­


ization


•	 n = 0: unsupervised learning, Spectral Clustering


∗Belkin, Niyogi, Sindhwani, 04 
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The Representer Theorem


Using the same type of reasoning used in Class 3, a Rep­

resenter Theorem can be easily proved for the solutions of 

Manifold Regularization algorithms. 

The expansion range over all the supervised and unsu­

pervised data points 

u 

f(x) = cjK(x, xj). 
j=1 



LapRLS


Generalizes the usual RLS algorithm to the semi-supervised 

setting. 

Set V (w, y) = (w − y)2 in the general functional. 

By the representer theorem, the minimization problem can 

be restated as follows 

∗ 1 
c = arg min (y−JKc)T (y−JKc)+λAc TKc+ 

λI 
c TKLKc, 

c∈IRu n u2

where y is the u-dimensional vector (y1, . . . , yn,0, . . . ,0), 

and J is the u × u matrix diag(1, . . . ,1,0, . . . ,0). 



LapRLS (cont.)


The functional is differentiable, strictly convex and coer­


cive. The derivative of the object function vanishes at the

∗minimizer c 

1 

n 
KJ(y − JKc ∗ ) + (λAK + 

λIn 

u2 
KLK)c ∗ = 0. 

From the relation above and noticing that due to the pos­

itivity of λA, the matrix M defined below, is invertible, we 

get 

c ∗ = M−1 y, 

where 

λIn
2 

M = JK + λAnI + LK.
2u




�

LapSVM


Generalizes the usual SVM algorithm to the semi-supervised 

setting. 

Set V (w, y) = (1 − yw)+ in the general functional above. 

Applying the representer theorem, introducing slack vari­

ables and adding the unpenalized bias term b, we easily get 

the primal problem 

� λI∗ c = arg min 1 
i
n 
=1 ξi + λAcTKc + 2c

TKLKc 
uc∈IRu,ξ∈IRn n 

usubject to : yi( j=1 cjK(xi, xj) + b) ≥ 1 − ξi i = 1, . . . , n 

ξi ≥ 0 i = 1, . . . , n 



� � 
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LapSVM: forming the Lagrangian


As in the analysis of SVM, we derive the Wolfe dual quadratic 

program using Lagrange multiplier techniques: 

n � 

λI 
�

1 � 

L(c, ξ, b, α, ζ) = ξi +
1 
c T 2λAK + 2 KLK c 

n 2 u2
i=1 

⎫ ⎞⎛ ⎧ 

n 
⎨ 

u 
⎬ 

− αi 
⎝yi cjK(xi, xj) + b − 1 + ξi

⎠ 

⎩ ⎭ 

i=1 j=1 
n 

− ζiξi 
i=1 

We want to minimize L with respect to c, b, and ξ, and 

maximize L with respect to α and ζ, subject to the con­

straints of the primal problem and nonnegativity constraints 

on α and ζ. 



� 

LapSVM: eliminating b and ξ


n∂L � 

= 0 =⇒ αiyi = 0 
∂b 

i=1 

∂L 1 
= 0 =⇒ − αi − ζi = 0 

∂ξi n 
1 

=⇒ 0 ≤ αi ≤ 
n 

We write a reduced Lagrangian in terms of the remaining 

variables: 
� 

λI 
� 

LR(c, α) =
1 
c T 2λAK + 2 KLK c − c TKJTYα + 

n 

αi, 
2 u2

i=1 

where J is the n × u matrix (I 0) with I the n × n identity 

matrix and Y = diag(y). 



� 

LapSVM: eliminating c


Assuming the K matrix is invertible, 

� 

λI 
�

∂LR 

= 0 =⇒ 2λAK + 2 KLK c − KJTYα = 0 
∂c u2

=⇒ c = 2λAI + 2 
λI 

LK 

�−1 

JTYα
2u

Note that the relationship between c and α is no 

longer as simple as in the SVM algorithm. 
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LapSVM: the dual program


Substituting in our expression for c, we are left with the 

following “dual” program: 

∗ � 1αTQαα = arg max n 
i=1 αi − 2α∈IRn 

nsubject to : = 0
i=1 yiαi 

0 ≤ αi ≤ 1 i = 1, . . . , n 
n 

Here, Q is the matrix defined by 

Q = YJK 2λAI + 2 
λI 

LK 

�−1 

JTY.
2u

One can use a standard SVM solver with the matrix 

Q above, hence compute c solving a linear system. 



∗
Numerical experiments 

• Two Moons Dataset 

• Handwritten Digit Recognition 

• Spoken Letter Recognition 

∗http://manifold.cs.uchicago.edu/manifold regularization 


