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About this class

Goal To introduce some methods for unsupervised learn-
ing: Gaussian Mixtures, K-Means, ISOMAP, HLLE,
Laplacian Eigenmaps.



Unsupervised learning

Only wu i.i.d. samples drawn on X from the unknown
marginal distribution p(x)

{x1,x0,..., 24}

The goal is to infer properties of this probability density.

In low-dimension many nonparametric methods allow di-
rect estimation of p(x) itself. Owing to the curse of di-
mensionality, this methods fail in high dimension.

One must settle for estimation of crude global models.



Unsupervised learning (cont.)

Different types of simple descriptive statistics that characterize aspects
of p(z)

e mixture modelling

representation of p(x) by a mixture of simple densities representing
different types or classes of observations [eg. Gaussian mixtures]

e combinatorial clustering

attempt to find multiple regions of X that contain modes of X
[eg. K-Means]

e dimensionality reduction

attempt to identify low-dimensional manifolds in X that represent
high data density [eg. ISOMAP,HLLE, Laplacian Eigenmaps]

e manifold learning

attempt to determine very specific geometrical or topological in-
variants of p(x) [eg. Homology learning]



Limited formalization

With supervised and semi-supervised learning there is a
clear measure of effectiveness of different methods. The
expected loss of various estimators I[fg] can be estimated
on validation set.

In the context of unsupervised learning, it is difficult to
find such a direct measure of success.

This situation has led to proliferation of proposed meth-
ods.



Mixture Modelling

Assumption that data is i.i.d. sampled from some proba-
bility distribution p(x).

p(x) is modelled as a mixture of component density func-
tions, each component corresponding to a cluster or mode.

The free parameters of the model are fit to the data by
maximum likelihood.



Gaussian Mixtures

We first choose a parametric model F, for the unknown
density p(x), hence maximize the likelihood of our data
relative to the parameters 6.

Example: two-component gaussian mixture model with pa-
rameters

0 = (m,pu1, 21, 42, 22).
The model:

Py(z) = (1 —m)Gg, (x —p1) + 7Gx, (z — p2)

Maximize the log-likelihood

O0{z1,...,zu}) = ) log Py(z;)
=1



The EM algorithim

Maximization of £(0|{x1,...,xzy}) is a difficult problem. Iterative max-
imization strategies, as the EM algorithm, can be used in practice to

get local maxima.

1. Expectation: compute the responsibilities

ﬂ-GZz (CEZ - /’1'2)

T A= m)Gr, (21 — p1) + 7Gx (i — pi2)

2. Maximization: compute means and variances

_ D Vi _ > i vi(ws — p2) (x; — p2)t
M2 = ——, 2o = ,
Zi i Zz i

and the mixing probability = = =3 ;.

3. Iterate until convergence

etc



Combinatorial Clustering

Algorithms in this class work on the data without any ref-
erence to an underlying probability model.

The goal is assigning each data point z; to a cluster k
belonging a predefined set {1,2,..., K}
C(1) = k, i=1,2,...,u

The optimal encoder C*(i) minimizes the overall dissimi-
larities d(z;, x;) between points x;, x; assigned to the same
Ccluster

K
WO =, Y Y dz)

k=1C(i)=k C(j)=k

The simplest choice for the dissimilarity d(-, -) is the squared
Euclidean distance in X



Combinatorial Clustering (cont.)

The minimization of the within-cluster point scatter W (C)
is straightforward in principle, but...

the number of distinct assignments grows exponentially
with the number of data points «

S(u ) = & 5 (CnyE—R(E o
(w5 =y 3 D)
already S(19,4) ~ 10101

In practice, clustering algorithms look for good suboptimal
solutions.

Most popular algorithms are based on iterative descent
strategies. Convergence to local optima.



K-Means

If d(z;, ;) = ||a:7;—a:j||2, introducing the mean vectors z;, as-
sociated to the k-th cluster, the within-cluster point scatter
W (C) can be rewritten as

W(O)— Z S Y lwi—gl)f = Z S |lm—zgl2

2 = 1 03G)=kC(j)=k k=1C(i)=k

Exploiting this representation one can easily verify that the

optimal encoder C* is the solution of the enlarged mini-
mization problem

min 7 > llm —myl%.

C,(my,... mK)k 1C>G)=k




K-Means (cont.)

K-Means attempts the minimization of the enlarged problem by an it-
erative alternating procedure. Each step 1 and 2 reduces the objective
function, so convergence is assured.

1. minimization with respect to (m1,...,mg), getting

myp — X

2. minimization with respect to C, getting
C(i) = arg min ||lz; — mygl|
1<k<K
3. do until C does not change

One should compare solutions derived from different initial random

means, and choose best local minimum.



Voronoi tessellation



Dimensionality reduction

Often reducing the dimensionality of a problem is an ef-
fective preliminary step toward the actual solution of a
regression or classification problem.

We |look for a mapping ¢ from the high dimensional space
R to the low dimensional space R? which preserves some
relevant geometrical structure of our problem.



Dimensionality reduction

iy




Principal Component Analysis (PCA)

Trying to approximate data {z1,...,zy} in RY by a d-
dimensional hyperplane

H = {c+Vo|s e R}

c vector in ]RD, 0 coordinates vector in R? and V =
(vi,...,vg), D x d matrix with {v;} orthonormal system
of vectors in RY.

Problem: find H which minimizes sum of squared dis-
tances of data points x; from H

u
H* = arg mbi[n S |z — Py (z)||?
1=1



Linear approximation




PCA: the algorithim
1. center data points: }* ;z; =0
2. define u x D matrix X = (z1,...,zy)%

3. construct singular value decomposition X = UsW1

e D x D matrix W = (wi,...,wp), with {w;} right eigenvectors
of X
e ux D matrix U= (uy,...,up), with {u;} left eigenvectors of X

e D x D matrix >~ = diag(o1,...,0p), With o1 > 00> --->0p >0
singular eigenvectors of X

4. answer: V= (wq,...,Wg)



Sketch of proof

e Rewrite the minimization problem

u

min Y o — ¢ — Voy|°
c,V.{6;} P

e Centering and minimizing with respect to ¢ and 6; gives
C = O, 92' == VTCCZ'

e Plugging into the minimization problem

u u
arg min D lwi — VVTz||? = arg m&xe?VVT:vi

d
=argmax » v;X"Xv;,
v
J=1

hence (v1,...,vy) are the first d eigenvectors of X'X: (wq,...



Mercer’s T heorem

Consider the pd kernel K(z,z') on X x X , and the proba-
bility distribution p(z) on X.

Define the integral operator Ly

(Lx N@) = [ K(z.a)f@)dp).

X

Mercer's T heorem states that
K(z,2") =Y Ngi(x)pi(z")
i

where (\;, ¢;); is the eigensystem of L.



Feature Map

From Mercer's Theorem, the mapping ® defined over X

®(z) = (Y A1¢1(2), [ Aaga(),...)
IS such that

K(z,z") = o(z)! d(2).

e K(x,z') can be interpreted as the dot product in the
“feature space’ .

e given a mapping of X into an Euclidean space, we can
construct a pd kernel X x X.



Kernelization

Algorithms that depend on the data, only through the dot

products z! z;, can be easily kernelized:

1. Choose pd kernel K(-,-)

2. Replace zlz; with K(z;, ;)

Example: PCA can be Kkernelized computing the eigen-
vectors of the matrix

M;; = K(z;, z;)

instead of those of the matrix X1 X.



ISOMAP *

e Assumption: the support of the marginal distribution
p(x) is a convex region of R% (our manifold M) iso-
metrically embedded in RY.

e Goal: constructing a map @ : RP — R? which “trans-
forms’ geodesic distances in M into Euclidean dis-
tances in IR

e Construction 1: approximate the matrix d, of pair-
wise geodesic distances between data points, estimat-
ing the shortest distances dz-j over the neighborhood
graph.

*Tenenbaum, et al, 00



e Construction 2: compute the u x u “kernel matrix”

1 1
K=--HDH, H=1I--111
2 U
with 1 the wu-dimensional column vector (1,1,...,1),
and D the matrix of squared distances, that is: D;; =

2
d2;.

e Result: let (g, uq)?_; be the eigensystem of K. The
embedding ®, of {z;}i

®(z;) = (YA1(u1)is Ao (U2 - -, Aa(ug)i),

is the isometry we were looking for.



ISOMAP global isometry

e

iy

K(x,y)= O @(y)

H{x)

DY)




Explaining ISOMAP

Firstly, we have to verify that the matrix K is a genuine
pd kernel on the data points.

1. Symmetry: since both H and D are symmetric, K =
—2H"DH, hence KT = K.

2. Positivity: Note that, by assumption, there exist vec-
tors {¢;}i 1, such that dzy = ||gbZ ¢;]|. For all ¢ =
(c1,...,cy), defining ing ¢’ = c——z 161, we get

1
cl'Ke = —E(HC)TD(HC> = —EC/TDC/

[D;; = ||¢; — &5
[>ic; = 0] = (Z C{ﬁbi)T(Z cipi) > 0.

1 / !
—52_ (8] ¢+ 6 & — 261 67)¢]
0]



Explaining ISOMAP (cont.)

e \We must prove that the pd kernel Kz-j induces the cor-
rect pairwise distances d;; between data points

dfj = K;; + K,; — 2K;;.

This can be verified by direct computation.

e By Mercer's Theorem, the feature map

Do) = (YA1(u)i A2(u2)i, -, vV (ua)s),

IS an isometry. If the manifold M is d-dimensional,

Mg = O for a > d, and we can use the truncated mapping
P.



Hessian Locally Linear Embedding (HLLE)*

ISOMAP outputs an embedding of the data points {z;}i ;
into ]Rd, attempting to preserve pairwise distances on the
underlying manifold M. The method gives guarantees of
convergence if M is isometric to a convex region in R<.

Convexity is a very strong hypothesis. Typically, linear
combinations of images are not reasonable images!

HLLE gives guarantees of convergence while relaxing the
convexity hypothesis.

*Hessian Eigenmaps; Donoho, Grimes 03



D

HLLE local isometry

=3

iy

d=

2

(%)

DY)




Core idea of HLLE

For every point x € M and system of coordinates (&1,...,&4)
on its tangent space, the Hessian at x of a function f :
M — R , is the matrix of second derivatives

0 0

The coreidea of HLLE is that the null space of the quadratic
form

HE = [ S (Hp)
M T
1]

is independent of the choice of local coordinates &;.

The null space of 'H is the d-dimensional linear space spanned
by the global cartesian coordinates



Computing the Hessian

In order to implement this idea, HLLE has to evaluate the
quadratic form H using the data points x;.

1. construct proxies for the tangent spaces using the k-
nearest neighborhood graph

2. implement a finite differences scheme to evaluate sec-
ond derivatives

3. compute eigensystem of approximation of H. Use d
eigenvectors with smallest eigenvalues as embedding
coordinates.



Local Linear Neighborhood

=2

=1




Laplacian based methods *

Unsupervised methods based on the eigensystem of the
Laplacian on the neighborhood graph with weights Wi;.

e Dimensionality Reduction: consider the solutions of
the eigenvector problem (0 =Xg <A1 < - < Xyu_1)

Lfa — )\a,Dfa,

where D = diag(D11, .., Duy). The considered embed-
ding into the d-dimensional Euclidean space is

P(z;) = ((F1)i-- -, (£Fa)i)-

e Spectral Clustering: use sign of components (f;); to
define two clusters: connection to min cut problem.

*Belkin, Niyogi, 02



