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About this class


Goal To introduce some methods for unsupervised learn­

ing: Gaussian Mixtures, K-Means, ISOMAP, HLLE, 

Laplacian Eigenmaps. 



Unsupervised learning


Only u i.i.d. samples drawn on X from the unknown 

marginal distribution p(x) 

{x1, x2, . . . , xu}. 

The goal is to infer properties of this probability density.


In low-dimension many nonparametric methods allow di­

rect estimation of p(x) itself. Owing to the curse of di­

mensionality, this methods fail in high dimension. 

One must settle for estimation of crude global models.




Unsupervised learning (cont.)


Different types of simple descriptive statistics that characterize aspects 
of p(x) 

• mixture modelling 

representation of p(x) by a mixture of simple densities representing 
different types or classes of observations [eg. Gaussian mixtures] 

• combinatorial clustering 

attempt to find multiple regions of X that contain modes of X 
[eg. K-Means] 

• dimensionality reduction 

attempt to identify low-dimensional manifolds in X that represent 
high data density [eg. ISOMAP,HLLE, Laplacian Eigenmaps] 

• manifold learning 

attempt to determine very specific geometrical or topological in­
variants of p(x) [eg. Homology learning] 



Limited formalization


With supervised and semi-supervised learning there is a 

clear measure of effectiveness of different methods. The 

expected loss of various estimators I[fS] can be estimated 

on validation set. 

In the context of unsupervised learning, it is difficult to 

find such a direct measure of success. 

This situation has led to proliferation of proposed meth­

ods. 



Mixture Modelling


Assumption that data is i.i.d. sampled from some proba­

bility distribution p(x). 

p(x) is modelled as a mixture of component density func­


tions, each component corresponding to a cluster or mode.


The free parameters of the model are fit to the data by 

maximum likelihood. 



� 

Gaussian Mixtures


We first choose a parametric model Pθ for the unknown 

density p(x), hence maximize the likelihood of our data 

relative to the parameters θ. 

Example: two-component gaussian mixture model with pa­

rameters 

θ = (π, µ1, Σ1, µ2, Σ2). 

The model: 

Pθ(x) = (1 − π)GΣ1
(x − µ1) + πGΣ2

(x − µ2) 

Maximize the log-likelihood 

u 

�(θ {x1, . . . , xu}) = logPθ(xi)|
i=1 



� � 

� 

The EM algorithm


Maximization of �(θ|{x1, . . . , xu}) is a difficult problem. Iterative max­
imization strategies, as the EM algorithm, can be used in practice to 
get local maxima. 

1. Expectation: compute the responsibilities 

πGΣ2
(xi − µ2)

γi = 
(1 − π)GΣ1

(xi − µ1) + πGΣ2
(xi − µ2) 

2. Maximization: compute means and variances 

γi(xi − µ2)(xi − µ2)T 
i µ2 = � 

γixi
, Σ2 = i 

� , etc 
γii γi i 

1and the mixing probability π = 
u 

γi.i 

3. Iterate until convergence 



Combinatorial Clustering


Algorithms in this class work on the data without any ref­

erence to an underlying probability model. 

The goal is assigning each data point xi to a cluster k 

belonging a predefined set {1, 2, . . . , K} 

C(i) = k, i = 1, 2, . . . , u


The optimal encoder C∗(i) minimizes the overall dissimi­

larities d(xi, xj) between points xi, xj assigned to the same 

cluster 

K1 � � � 

W (C) = d(xi, xj)
2 

k=1 C(i)=k C(j)=k 

The simplest choice for the dissimilarity d(·, ·) is the squared 

Euclidean distance in X 



Combinatorial Clustering (cont.)


The minimization of the within-cluster point scatter W (C) 

is straightforward in principle, but... 

the number of distinct assignments grows exponentially 

with the number of data points u 

� 

(−1)K−k 
�K�1 K 

kuS(u, K) = 
K! k

k=1 

already S(19, 4) � 1010! 

In practice, clustering algorithms look for good suboptimal 

solutions. 

Most popular algorithms are based on iterative descent 

strategies. Convergence to local optima. 



� � 

K-Means


If d(xi, xj) = �xi−xj�2, introducing the mean vectors x̄k as­

sociated to the k-th cluster, the within-cluster point scatter 

W (C) can be rewritten as 

K K1 � � � � � 

�xi−xj� 2 �xi−¯ 2W (C) = = .

2 

xk�
k=1 C(i)=k C(j)=k k=1 C(i)=k 

Exploiting this representation one can easily verify that the 

optimal encoder C∗ is the solution of the enlarged mini­

mization problem 

K 

min �xi − mk� 2 . 
C,(m1,...,mK) k=1 C(i)=k 



K-Means (cont.)


K-Means attempts the minimization of the enlarged problem by an it­
erative alternating procedure. Each step 1 and 2 reduces the objective 
function, so convergence is assured. 

1. minimization with respect to (m1, . . . , mK), getting


mk = ¯
xk 

2. minimization with respect to C, getting


C(i) = arg min

1≤k≤K 

�xi − mk� 

3. do until C does not change 

One should compare solutions derived from different initial random 

means, and choose best local minimum. 



Voronoi tessellation




Dimensionality reduction


Often reducing the dimensionality of a problem is an ef­

fective preliminary step toward the actual solution of a 

regression or classification problem. 

We look for a mapping Φ from the high dimensional space 

IRD to the low dimensional space IRd which preserves some 

relevant geometrical structure of our problem. 



Dimensionality reduction




� 

Principal Component Analysis (PCA)


Trying to approximate data {x1, . . . , xu} in IRD by a d-

dimensional hyperplane 

H = {c + Vθ θ ∈ IRd | } 

c vector in IRD , θ coordinates vector in IRd and V = 

(v1, . . . ,vd), D d matrix with {vi} orthonormal system × 
of vectors in IRD . 

Problem: find H which minimizes sum of squared dis­

tances of data points xi from H 

u 

�xi − PH(xi)� 2H∗ = argmin 
H 

i=1 



Linear approximation




�

PCA: the algorithm


1. center data points: i
u 
=1 xi = 0 

2. define u × D matrix X = (x1, . . . , xu)T 

3. construct singular value decomposition X = UΣWT 

•	 D × D matrix W = (w1, . . . ,wD), with {wi} right eigenvectors


of X


•	 u×D matrix U = (u1, . . . ,uD), with {ui} left eigenvectors of X


•	 D×D matrix Σ = diag(σ1, . . . , σD), with 
singular eigenvectors of X


σ1	 ≥ σ2 ≥ · · · ≥ σD ≥ 0 

4. answer: V = (w1, . . . ,wd) 



� 

�	 � 

� 

Sketch of proof


• Rewrite the minimization problem 

u 

�xi − c − Vθi� 2min 
c,V,{θi}

i=1 

•	 Centering and minimizing with respect to c and θi gives 

c = 0, θi = VTxi 

• Plugging into the minimization problem 

u	 u 

2	 Targmin �xi − VVTxi� = argmax xi VVTxi 
V	 V 

i=1 i=1 

d 

T = argmax vj X
T Xvj

V 
j=1 

hence (v1, . . . , vd) are the first d eigenvectors of XT X: (w1, . . . , wd) 



� 

� 

Mercer’s Theorem


Consider the pd kernel K(x, x�) on X ×X , and the proba­

bility distribution p(x) on X. 

Define the integral operator LK 

(LK f)(x) = K(x, x�)f(x�)dp(x�). 
X 

Mercer’s Theorem states that


K(x, x�) = λiφi(x)φi(x
�) 

i 

where (λi, φi)i is the eigensystem of LK. 



�	 � 

�

Feature Map


From Mercer’s Theorem, the mapping Φ defined over X


Φ(x) = ( λ1φ1(x), λ2φ2(x), . . . ) 

is such that 

K(x, x�) = Φ(x)TΦ(x). 

• K(x, x ) can be interpreted as the dot product in the


“feature space”.


•	 given a mapping of X into an Euclidean space, we can 

construct a pd kernel X × X. 



Kernelization


Algorithms that depend on the data, only through the dot

Tproducts xi xj, can be easily kernelized: 

1. Choose pd kernel K(·, ·) 

T2. Replace xi xj with K(xi, xj) 

Example: PCA can be kernelized computing the eigen­

vectors of the matrix 

Mij = K(xi, xj) 

instead of those of the matrix XTX. 



ISOMAP ∗


•	 Assumption: the support of the marginal distribution 

p(x) is a convex region of IRd (our manifold M) iso­

metrically embedded in IRD . 

Goal: constructing a map Φ : IRD IRd which “trans­•	 → 
forms” geodesic distances in M into Euclidean dis­

tances in IRd 

•	 Construction 1: approximate the matrix dM of pair­

wise geodesic distances between data points, estimat­

ing the shortest distances dij over the neighborhood 

graph. 

∗Tenenbaum, et al, 00 



� � � 

• Construction 2: compute the u × u “kernel matrix”


1 1

K = −

2 
HDH, H = I − 1111T , 

u 

with 11 the u-dimensional column vector (1, 1, . . . , 1), 

and D the matrix of squared distances, that is: Dij = 

d2 
ij. 

• Result: let (λa, ua)u be the eigensystem of K. The a=1 
uembedding Φ, of {xi}i=1 

Φ(xi) = ( λ1(u1)i, λ2(u2)i, . . . , λd(ud)i), 

is the isometry we were looking for. 



ISOMAP global isometry




�

� 

� � 

Explaining ISOMAP


Firstly, we have to verify that the matrix K is a genuine 

pd kernel on the data points. 

1. Symmetry: since both H and D are symmetric, K = 

− 1HTDH, hence KT = K.2

2. Positivity: Note that, by assumption, there exist vec­

utors {φi}i=1, such that dij = For all c =�φi − φj�. 

1 u(c1, . . . , cu), defining ing c� = c −
u i=1 ci11, we get 

1 
cTKc = −

2
(Hc)TD(Hc) =

1 �T−
2 
c Dc� 

[Dij = �φi − φj�2] =
1 � 

ci(φ
T
i φi + φTφj − 2φi

Tφj)cj
�

j−
2 

�
ij 

[ i c�i = 0] = ( ci
�φi)

T ( ci
�φi) ≥ 0. 

i i 



�	 � 

Explaining ISOMAP (cont.)


•	 We must prove that the pd kernel Kij induces the cor­

rect pairwise distances dij between data points 

d2 = ij Kii + Kjj − 2Kij. 

This can be verified by direct computation. 

•	 By Mercer’s Theorem, the feature map 

Φ0(xi) = ( λ1(u1)i, λ2(u2)i, . . . , 
√

λu(uu)i), 

is an isometry. If the manifold M is d-dimensional, 

λa = 0 for a > d, and we can use the truncated mapping 

Φ. 



Hessian Locally Linear Embedding (HLLE)∗


uISOMAP outputs an embedding of the data points {xi}i=1 

into IRd, attempting to preserve pairwise distances on the 

underlying manifold M. The method gives guarantees of 

convergence if M is isometric to a convex region in IRd . 

Convexity is a very strong hypothesis. Typically, linear 

combinations of images are not reasonable images! 

HLLE gives guarantees of convergence while relaxing the 

convexity hypothesis. 

∗Hessian Eigenmaps; Donoho, Grimes 03 



HLLE local isometry




� 

� 

Core idea of HLLE


For every point x ∈ M and system of coordinates (ξ1, . . . , ξd) 

on its tangent space, the Hessian at x of a function f : 

M → IR , is the matrix of second derivatives 

∂ ∂ 
(Hf(x))ij = 

∂ξi ∂ξj 
f(x), i, j = 1, . . . , d 

The core idea of HLLE is that the null space of the quadratic 

form 

H(f) = (Hf(x))
2 
ij 

ij M 

is independent of the choice of local coordinates ξi. 

The null space of H is the d-dimensional linear space spanned 

by the global cartesian coordinates 



Computing the Hessian


In order to implement this idea, HLLE has to evaluate the 

quadratic form H using the data points xi. 

1. construct proxies for the tangent spaces using the k-

nearest neighborhood graph 

2. implement a finite differences scheme to evaluate sec­

ond derivatives 

3. compute eigensystem of approximation of H. Use d 

eigenvectors with smallest eigenvalues as embedding 

coordinates. 



Local Linear Neighborhood




Laplacian based methods ∗


Unsupervised methods based on the eigensystem of the 

Laplacian on the neighborhood graph with weights Wij. 

•	 Dimensionality Reduction: consider the solutions of 

the eigenvector problem (0 = λ0 ≤ λ1 ≤ · · · ≤ λu−1) 

Lfa = λaDfa 

where D = diag(D11, . . . , Duu). The considered embed­

ding into the d-dimensional Euclidean space is 

Φ(xi) = ((f1)i, . . . , (fd)i). 

•	 Spectral Clustering: use sign of components (f1)j to 

define two clusters: connection to min cut problem. 

∗Belkin, Niyogi, 02 


