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Supervised Ranking Problems


•	 Preference Modeling: 

–	 Given a set of possible product configurations x1, x2,…xd predict 

the most preferred one; predict the rating 
•	 Information Retrieval: 


–	 Given a query q, and set of candidate matches x1, x2,…xd predict 
the best answer 

•	 Information Extraction:

–	 Given a set of possible part of speech tagging choices, x1, 

x2,…xd predict the most correct tag boundaries 
•	 E.g “The_day_they_shot_John_Lennon/WE at the 

Dogherty_Arts_Center/WE” 
•	 Multiclass classification:


–	 Given a set of possible class labels y1, y2,…yd and confindense 
scores c1, c2,…cd, predict the correct label 



Types of information available


• Preference modeling: 
– Metric based: 

• User rated configuration x with y =U (x )i i i

– Choice based: 
• Given choices x1, x2,…xd, the user chose xf 

– Prior information about the features:

• Cheaper is better 
• Faster is better 
• etc  



Types of information available


• Information Retrieval: 
– Metric based: 

• Users clicked on link xi with a frequency y =U (x )i i

– Choice based: 
• Given choices x1, x2,…xd, the user clicked on xf 

– Prior information about the features: 
• Keyword matches (the more the better) 
• Unsupervised similarity scores (TFIDF) 
• etc  



Types of information available


• Information Extraction: 
–	 Choice based: 

• Given tagging choices x1, x2,…xd, the hand labeling chose xf 

–	 Prior information about the features: 
•	 Unsupervised scores 

• Multiclass: 
–	 Choice based: 

•	 Given vectors the confidence scores c1, c2,…cd for class labels 
1,2,…d the correct label was yf.. . The confidence scores may be 
coming from set of weak classifiers, and/or OVA comparisons. 

–	 Prior information about the features: 
•	 The higher the confidence score the more likely to represent the 

correct label. 



(Semi-)Unsupervised Ranking Problems


•	 Learn relationships of the form: 
–	Class A is closer to B, than it is to C 

•	 We are given a set of l labeled comparisons for 
a user, and a set of u seemingly-unrelated 
comparisons from other users. 
– How do we incorporate the seemingly-unrelated 

information from the u instances 
–	How do we measure similarity




Rank Correlation Kendall’s τ
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•	 P is the number of concordant pairs


•	 Q is the number of discordant pairs


•	 Value ranges from -1 for reverse rankings to +1 
for same rankings. 

•	 0 implies independence




Example


Person 
A B C D E F G H 

Rank by Height 1 2 3 4 5 6 7 8 
Rank by Weight 3 4 1 2 5 7 8 6 

• P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22
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Minimizing discordant pairs
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Equivalent to 
satisfying all ∀ r(x ) ≥ r(x j): wΦ(x ) ≥ wΦ(x j)i i 
constraints: 



Familiar problem


accounting for noise:

∀ r(x ) ≥ r(x ): wΦ(x ) ≥ wΦ(x )+1-ξij


ξ 
i j i j 

ij ≥ 0 

rearranging : 

w (Φ(x ) -Φ(x j)) ≥ 1-ξi ij 

equivalent to classification of pairwise difference vectors 



Regularized Ranking


l 
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Notes: 
V(.) can be any relevant loss function 
We could use any binary classifier; RLSC, SVM, Boosted Trees, etc 
The framework for classifying vectors of differences is general 
enough to apply to both metric, and choice based problems 



Bound on Mean Average Precision

Minimizing Q, works for other IR metrics as well. 
Consider Mean Average Precision: 

n iMean (AvgPrec ) = 
1 ∑ n i=1 pi


p = rank of sorted retrieved itemi
i 

n = number of ranked retrieved items 
n 

∑ p = + n  n  +1 /  2  Q ( )i

i=1


Q number of discordant items = 
n1
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n i=1 pi
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 ii 



Bound on Mean Average Precision
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Prior Information

• Ranking problems come with a lot of prior 
knowledge
– Positivity constraints

• For a pairwise comparison, where all attributes are 
equal, except one, the instance with the highest 
(lowest) value is preferred.

– If A is better than B, then B is worse than A



Prior information

Assume linear SVM case:

1

2
,..., ,

1 1...

min
m i

n

w w i f
i f m

wξ ξ λ
= =

+∑ ∑

{ }1,...,i n∀ ∈

fw  1- , f = 1, . . .mfξ≥ ∀

The problem becomes:

1

2
,..., ,

1 1 1...

min
m i

n m

w w i f f
i f f m

C wξ ξ ξ λ
= = =

+ +∑ ∑ ∑

Positivity constraints Symmetric comparisons

( )

( )

1

1  

i j

j i

if

f x x

then

f x x

− = +

− = −



Constructing the training set from examples

• Sometimes the comparisons are not explicit:
– Information Retrieval (Learn from clickthrough data)

• “Winning” instances are the ones clicked most often 
• Features are other ranking scores (similarity of query with 

title, or text segments in emphasis etc).  This also implies 
positivity constraints 

– Supervised summarization
• “Winning” words are they ones that show up in the summary
• Features are other content-word predictors (TFIDF score, 

distance from beginning of text, etc). We can again 
incorporate positivity constraints



Semi-unsupervised Ranking
• Learn distance metrics from comparisons of the form:

– A is closer to B, than C

• Examples from WEBKB (Schultz&Joachims):
– Webpages from the same university are closer than ones from 

different schools
– Webpages about the same topic (faculty, student, project, and 

course) are closer than pages from different ones

– Webpages about same topic are close. If from 
different topics, but one of them a student page, and 
one a faculty page, then they are closer than other 
different topic pages.



Learning weighted distances

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( )

,

2

1

2

, ,

, ,

,

, ,

:
1min
2

. .( , , ) : 1

:
1min
2

, ( )( ) . .

T
W

n

ij i i
i

T
ijk

i j k

TT T T
train i k i k i j i j ijk

T
ijk

i j k

T T

d x y x y W x y

W K x x K y x

this leads to

AWA C

s t i j k P x x AWA x x x x AWA x x

or wecan write it as

w Lw C

with A L A A A A s t A

φ φ φ φ φ φ

ξ

ξ

ξ

Τ
Φ

=

= − Φ Φ −

= −

+

∈ − − − − − ≥ −

+

= Φ =

∑

∑

∑
2T TWA w Lw=



Learning distance metrics

55.06%63.08% 79.67% Topic+FacultyStu
dent Distance

55.57%61.82% 75.40% Topic Distance          

80.72%67.88% 98.43% University 
Distance     

TFIDFBinary Learned 

Experiments (Schultz&Joachims)

Note: Schultz&Joachims report that they got the best results with a linear kernel 
where A=I.  They do not regularize the complexity of their weighted distance 
metric (Remember Regularized Manifolds from previous class)



Learning from seemingly-unrelated comparisons

( )( ) ( )( ) 22

1 1

min

0 1
,

K

l l u

f H i i i i K
i i l

i j k i j k

V y f x V y f x f

where y y y and x x x j k

μ γ

μ

+

∈
= = +

− + − +

≤ ≤
= − = − ∀ ≠

∑ ∑

(Evgeniou&Pontil; Chappelle&Harchaoui )
Given l comparisons from the same user 
and u comparisons from seemingly-unrelated users:



25.258 %22.355 %20.440 %19.589 %18.748 %μ=0.6

22.090 %19.838 %18.676 %17.810 %17.455 %μ=0.5

19.494 %17.812 %17.162 %16.786 %16.581 %μ=0.4

17.055 %16.304 %15.918 %15.602 %15.998 %μ=0.3

15.276 %15.323 %15.157 %15.520 %16.133 %μ=0.2

15.242%15.636 %16.225 %16.508 %17.132 %μ=0.1

18.174 %18.023 %18.043 %17.905 %17.986 %μ=0.01

18.135 %18.140 %18.092 %17.835 %18.182 %μ=0.001

18.036 %18.089 %18.067 %18.135 %17.999 %μ=0.0001

18.164 %18.182%18.217 %18.123 %17.897 %μ=0.00001

18.009 %18.152%17.847 %18.117 %18.268 %μ=0.00000
1

18.430 %18.040%18.380 %18.090 %18.141 %μ=0

u=100u=50u=30u=20u=10

Results of RLSC experiments with l=10 comparisons per 
user, with u instances of seemingly-unrelated comparisons, 
and weight μ on loss contributed by the seemingly-
unrelated data. 



Ranking learning with seemingly-
unrelated data

• More seemingly-unrelated comparisons in the 
training set improve results

• There is no measure of similarity of the 
seemingly-unrelated data (recall 
Schultz&Joachims)



Regularized Manifolds
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Laplacian RLSC:
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Laplacian RLSC for ranking with seemingly-
unrelated data
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This is equivalent to the following minimization:



Laplacian RLSC for ranking with seemingly-
unrelated data

( ) ( )* *

1

,

,  for 

,  for 

l u

i i
i

i i i i

i i i i

f x K x x

y y x x i l

y y x x l i l u
l

u

μ

μ μ

μ μ

α

μ μ
μμ

+

=

=

= = ≤

′ ′= = < ≤ +

′ =

∑

( ) ( )

( )

( )

1 1

*

1

*
2

 is the   gram matrix ( , )

... , ...

Replace , take partial derivatives and solve for 

ij i j

l l l u

I
A

K l u l u K K x x

Y y y y y

f x

lK lI LK Y
u l

μ μ μ μ

μ

μ μ μ

μ μ

α

γα γ

+ +

−

+ × + =

⎡ ⎤= ⎣ ⎦

⎛ ⎞
= + +⎜ ⎟
⎜ ⎟+⎝ ⎠



25.35 %22.38 %20.60 %20.20 %17.74 %μ=0.6

20.60 %19.48 %18.74 %16.64 %17.90 %μ=0.5

20.75 %17.93 %17.94 %16.54 %15.94 %μ=0.4

18.60 %16.57 %16.74 %16.76 %16.22 %μ=0.3

14.30 %14.89 %14.86 %14.68 %14.80 %μ=0.2

16.30 %15.58 %16.04 %16.68 %16.86 %μ=0.1

18.15 %17.70 %17.98 %17.52 %16.92 %μ=0.01

18.00 %17.87 %18.28 %18.12 %17.20 %μ=0.001

17.90 %17.73 %18.02 %18.76 %18.56 %μ=0.0001

18.10 %18.46 %17.54 %18.20 %18.30 %μ=0.00001

20.10 %18.11 %17.52 %19.46 %17.34 %μ=0.000001

17.54%18.20%18.38%18.50%17.50%μ=0

u=100u=50u=30u=20u=10

Results of Laplacian RLSC experiments with l=10
comparisons per user, with u instances of seemingly-
unrelated data, and μ weight on loss contributed by the 
seemingly-unrelated comparisons. 



Observations

• Optimal μ (estimated by CV) gives better 
performance, than without the Manifold setting

• More seemingly-unrelated data, do not affect 
performance significantly

• Seemingly-unrelated examples have impact that 
depends on the manifold transformation:
– The intrinsic penalty term accounts for examples that 

are neighboring on the manifold, and have opposite 
labels.


