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Bagging and sub-sampling methods
• 

Bias-Variance and stability for bagging • 

Boosting and correlations of machines
• 

Gradient descent view of boosting • 



Bagging (Bootstrap AGGregatING)


Given a training set D = {(x1, y1), . . . (xn, yn)}, 

sample T sets of n elements from D (with replacement) • 

D1, D2, . . . DT T quasi replica training sets; → 

train a machine on each Di, i = 1, ..., T and obtain a • 

sequence of T outputs f1(x), . . . fT(x). 



Bagging (cont.)


The final aggregate classifier can be 

for regression • 

f̄(x) = 
T�


fi(x),

i=1 

the average of fi for i = 1, ..., T ; 

for classification • 

f̄(x) = sign( 
T�


fi(x)) 
i=1 

or the majority vote 

T�

f̄(x) = sign( sign(fi(x))) 

i=1




Variation I: Sub-sampling methods


- “Standard” bagging: each of the T subsamples has size 

n and created with replacement. 

- “Sub-bagging”: create T subsamples of size α only (α < 

n). 

- No replacement: same as bagging or sub-bagging, but 

using sampling without replacement 

- Overlap vs non-overlap: Should the T	 subsamples over-
nlap? i.e. create T subsamples each with	 T training data. 



� 

� 

� 

Bias - Variance for Regression (Breiman

1996)


Let 

I[f ] = (f (x) − y)2 p(x, y)dxdy 

be the expected risk and f0 the regression function. With 

f̄(x) = ES fS (x), if we define the bias as 

(f0(x) − f̄(x))2 p(x)dx 

and the variance as 

ES 

�� 

(fS (x) − f̄(x))2 p(x)dx , 

we have the decomposition 

ES {I[fS ]} = I[f0] + bias + variance. 



Bagging reduces variance (Intuition)


If each single classifier is unstable – that is, it has high 

variance, the aggregated classifier f̄ has a smaller vari­

ance than a single original classifier. 

The aggregated classifier f̄ can be thought of as an ap­

proximation to the true average f obtained by replacing 

the probability distribution p with the bootstrap approxi­

mation to p obtained concentrating mass 1/n at each point 

(xi, yi). 



Variation II: weighting and combining

alternatives


- No subsampling, but instead each machine uses different


weights on the training data.


- Instead of equal voting, use weighted voting.


- Instead of voting, combine using other schemes.




Weak and strong learners


Kearns and Valiant in 1988/1989 asked if there exist two 

types of hypothesis spaces of classifiers. 

Strong learners: Given a large enough dataset the clas­• 

sifier can arbitrarily accurately learn the target function 

1 − τ 

Weak learners: Given a large enough dataset the clas­• 

sifier can barely learn the target function 1 
2 + τ 

The hypothesis boosting problem: are the above equiva­

lent ? 



The original Boosting (Schapire, 1990):

For Classification Only


1. Train a first classifier	 f1 on a training set drawn from 
a probability p(x, y). Let �1 be the obtained training 
performance; 

2. Train a second classifier f2 on a training set drawn from 
a probability p2(x, y) such that it has half its measure 
on the event that h1 makes a mistake and half on the 
rest. Let �2 be the obtained performance; 

3. Train a third classifier	 f3 on disagreements of the first 
two – that is, drawn from a probability p3(x, y) which 
has its support on the event that h1 and h2 disagree. 
Let �3 be the obtained performance. 
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Boosting (cont.)


Main result: If �i < p for all i, the boosted hypothesis 

g = MajorityV ote (f1, f2, f3) 

has training performance no worse than � = 3p2 − 2p3 



Adaboost (Freund and Schapire, 1996)


The idea is of adaptively resampling the data 

Maintain a probability distribution over training set; • 

Generate a sequence of classifiers in which the “next” • 

classifier focuses on sample where the “previous” clas­

sifier failed; 

Weigh machines according to their performance. • 



Adaboost


Given: a class F = {f : X �→ {−1, 1}} of weak learners and 
the data {(x1, y1), . . . , (xn, yn)}, Initialize the 
weights as w1(i) = 1/n. 

yi ∈ {−1, 1}. 

For t = 1, . . . T : 

1. Find a weak learner ft based on weights wt(i); 

2. Compute the weighted error �t = 
�

i
n 
=1 wt(i)I(yi �= ft(xi)); 

3. Compute the importance of ft as αt = 1/2 ln 
�
1−�t 

�
;�t 

4. Update the distribution wt+1(i) = wt(i)e
−αtyift(xi)

,Zt 

.Zt = 
�n

i=1 wt(i)e−αtyiht(xi)



Adaboost (cont.)


Adopt as final hypothesis 

g(x) = sign 

⎛
⎝


T�

αtft(x) 

t=1 

⎞
⎠




Theory of Boosting


We define the margin of (xi, yi) according to the real valued 

function g to be 

margin(xi, yi) = yig(xi). 

Note that this notion of margin is different from the SVM 

margin. This defines a margin for each training point! 



Performance of Adaboost


Theorem: Let γt = 1/2 − �t (how much better ft is on the 

weighted sample than tossing a coin). Then 

1
 n�


n i=1 
I(yig(xi) < 0) ≤


T�


t=1


�
1 − 4γ2 

t 



Gradient descent view of boosting


We would like to minimize 
n1 � 

I(yig(xi) < 0) 
n i=1 

over the linear span of some base class F . Think of F as 
the weak learners. 

Two problems: a) linear span of F can be huge and search­
ing for the minimizer directly is intractable. b) the indi­
cator is non-convex and the problem can be shown to be 
NP-hard even for simple F . 

Solution to b): replace the indicator I(yg(x) < 0) with a 
convex upper bound φ(yg(x)). 

Solution to a)?




Gradient descent view of boosting


Let’s search over the linear span of F step-by-step. At 

each step t, we add a new function ft ∈ F to the existing 

g = 
�t−1 

i=1 αifi. 

1Let Cφ(g) = n 
�n

i=1 φ(yig(xi)). We wish to find ft ∈ F 

to add to g such that Cφ(g + �ft) decreases. The desired 

direction is −�Cφ(g). We choose the new function ft such 

that it has the greatest inner product with −� Cφ, i.e. it 

maximizes 

− < �Cφ(g), ft > . 



�

�

�

Gradient descent view of boosting


One can verify that 

1 n�

− < �Cφ(g), ft >=
 yift(xi)φ
(yig(xi)).2

−
n i=1 

Hence, finding ft maximizing − < �Cφ(g), ft > is equivalent 

to minimizing the weighted error 

n�


i=1 

where 

wt(i)I(ft(xi) = yi) 

φ (yig(xi)) 
wt(i) := �n (yjg(xj ))j=1 φ

�

For φ(yg(x)) = e−yg(x) this becomes Adaboost.



