
Bagging and Boosting

9.520 Class 10, 13 March 2006

Sasha Rakhlin

Plan

Bagging and sub-sampling methods
•

Bias-Variance and stability for bagging •

Boosting and correlations of machines
•

Gradient descent view of boosting •

Bagging (Bootstrap AGGregatING)

Given a training set D = {(x1, y1), . . . (xn, yn)},

sample T sets of n elements from D (with replacement) •

D1, D2, . . . DT T quasi replica training sets; →

train a machine on each Di, i = 1, ..., T and obtain a •

sequence of T outputs f1(x), . . . fT(x).

Bagging (cont.)

The final aggregate classifier can be

for regression •

f̄(x) =
T�

fi(x),

i=1

the average of fi for i = 1, ..., T ;

for classification •

f̄(x) = sign(
T�

fi(x))
i=1

or the majority vote

T�

f̄(x) = sign(sign(fi(x)))

i=1

Variation I: Sub-sampling methods

- “Standard” bagging: each of the T subsamples has size

n and created with replacement.

- “Sub-bagging”: create T subsamples of size α only (α <

n).

- No replacement: same as bagging or sub-bagging, but

using sampling without replacement

- Overlap vs non-overlap: Should the T	 subsamples over-
nlap? i.e. create T subsamples each with	 T training data.

�

�

�

Bias - Variance for Regression (Breiman

1996)

Let

I[f] = (f (x) − y)2 p(x, y)dxdy

be the expected risk and f0 the regression function. With

f̄(x) = ES fS (x), if we define the bias as

(f0(x) − f̄(x))2 p(x)dx

and the variance as

ES

��

(fS (x) − f̄(x))2 p(x)dx ,

we have the decomposition

ES {I[fS]} = I[f0] + bias + variance.

Bagging reduces variance (Intuition)

If each single classifier is unstable – that is, it has high

variance, the aggregated classifier f̄ has a smaller vari­

ance than a single original classifier.

The aggregated classifier f̄ can be thought of as an ap­

proximation to the true average f obtained by replacing

the probability distribution p with the bootstrap approxi­

mation to p obtained concentrating mass 1/n at each point

(xi, yi).

Variation II: weighting and combining

alternatives

- No subsampling, but instead each machine uses different

weights on the training data.

- Instead of equal voting, use weighted voting.

- Instead of voting, combine using other schemes.

Weak and strong learners

Kearns and Valiant in 1988/1989 asked if there exist two

types of hypothesis spaces of classifiers.

Strong learners: Given a large enough dataset the clas­•

sifier can arbitrarily accurately learn the target function

1 − τ

Weak learners: Given a large enough dataset the clas­•

sifier can barely learn the target function 1
2 + τ

The hypothesis boosting problem: are the above equiva­

lent ?

The original Boosting (Schapire, 1990):

For Classification Only

1. Train a first classifier	 f1 on a training set drawn from
a probability p(x, y). Let �1 be the obtained training
performance;

2. Train a second classifier f2 on a training set drawn from
a probability p2(x, y) such that it has half its measure
on the event that h1 makes a mistake and half on the
rest. Let �2 be the obtained performance;

3. Train a third classifier	 f3 on disagreements of the first
two – that is, drawn from a probability p3(x, y) which
has its support on the event that h1 and h2 disagree.
Let �3 be the obtained performance.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Boosting (cont.)

Main result: If �i < p for all i, the boosted hypothesis

g = MajorityV ote (f1, f2, f3)

has training performance no worse than � = 3p2 − 2p3

Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

Maintain a probability distribution over training set; •

Generate a sequence of classifiers in which the “next” •

classifier focuses on sample where the “previous” clas­

sifier failed;

Weigh machines according to their performance. •

Adaboost

Given: a class F = {f : X �→ {−1, 1}} of weak learners and
the data {(x1, y1), . . . , (xn, yn)}, Initialize the
weights as w1(i) = 1/n.

yi ∈ {−1, 1}.

For t = 1, . . . T :

1. Find a weak learner ft based on weights wt(i);

2. Compute the weighted error �t =
�

i
n
=1 wt(i)I(yi �= ft(xi));

3. Compute the importance of ft as αt = 1/2 ln
�
1−�t

�
;�t

4. Update the distribution wt+1(i) = wt(i)e
−αtyift(xi)

,Zt

.Zt =
�n

i=1 wt(i)e−αtyiht(xi)

Adaboost (cont.)

Adopt as final hypothesis

g(x) = sign

⎛
⎝

T�

αtft(x)

t=1

⎞
⎠

Theory of Boosting

We define the margin of (xi, yi) according to the real valued

function g to be

margin(xi, yi) = yig(xi).

Note that this notion of margin is different from the SVM

margin. This defines a margin for each training point!

Performance of Adaboost

Theorem: Let γt = 1/2 − �t (how much better ft is on the

weighted sample than tossing a coin). Then

1
 n�

n i=1
I(yig(xi) < 0) ≤

T�

t=1

�
1 − 4γ2

t

Gradient descent view of boosting

We would like to minimize
n1 �

I(yig(xi) < 0)
n i=1

over the linear span of some base class F . Think of F as
the weak learners.

Two problems: a) linear span of F can be huge and search­
ing for the minimizer directly is intractable. b) the indi­
cator is non-convex and the problem can be shown to be
NP-hard even for simple F .

Solution to b): replace the indicator I(yg(x) < 0) with a
convex upper bound φ(yg(x)).

Solution to a)?

Gradient descent view of boosting

Let’s search over the linear span of F step-by-step. At

each step t, we add a new function ft ∈ F to the existing

g =
�t−1

i=1 αifi.

1Let Cφ(g) = n
�n

i=1 φ(yig(xi)). We wish to find ft ∈ F

to add to g such that Cφ(g + �ft) decreases. The desired

direction is −�Cφ(g). We choose the new function ft such

that it has the greatest inner product with −� Cφ, i.e. it

maximizes

− < �Cφ(g), ft > .

�

�

�

Gradient descent view of boosting

One can verify that

1 n�

− < �Cφ(g), ft >=
 yift(xi)φ
(yig(xi)).2

−
n i=1

Hence, finding ft maximizing − < �Cφ(g), ft > is equivalent

to minimizing the weighted error

n�

i=1

where

wt(i)I(ft(xi) = yi)

φ (yig(xi))
wt(i) := �n (yjg(xj))j=1 φ

�

For φ(yg(x)) = e−yg(x) this becomes Adaboost.

