Bagging and Boosting
9.520 Class 10, 13 March 2006

Sasha Rakhlin

Plan

Bagging and sub-sampling methods
Bias-Variance and stability for bagging
Boosting and correlations of machines
Gradient descent view of boosting

Bagging (Bootstrap AGGregatING)

Given a training set D = {(x1,91), ... (Xn,yn)},

e sample T sets of n elements from D (with replacement)
D1, Do>,... Dy — T quasi replica training sets;

e train a machine on each D;, + = 1,...,7 and obtain a
sequence of T outputs f1(x),... fr(x).

Bagging (cont.)

The final aggregate classifier can be

e fOr regression
T
fx) = > fi(x),
i=1

the average of f; for+:=1,...,T,

e for classification

T
f(x) =sign(_ fi(x))
1=1

or the majority vote

T
f(x) =sign(>_ sign(fi(x)))
1=1

Variation I: Sub-sampling methods

- “Standard” bagging: each of the T subsamples has size
n and created with replacement.

- “Sub-bagging”: create T subsamples of size o only (a <

- No replacement: same as bagging or sub-bagging, but
using sampling without replacement

- Overlap vs non-overlap: Should the T subsamples over-
lap? i.e. create T subsamples each with % training data.

Bias - Variance for Regression (Breiman
1996)

Let
171 = [(() = y)*p(x, y)dxdy

be the expected risk and fo the regression function. With
f(x) = Eg fq(x), if we define the bias as

[(o) = FGO)*p(x)dx

and the variance as

Es{ [(1560 = F0)*p(x)x |

we have the decomposition

Eq¢{I[fs]} = I[fo] + bias + variance.

Bagging reduces variance (Intuition)

If each single classifier is unstable — that is, it has high
variance, the aggregated classifier f has a smaller vari-
ance than a single original classifier.

The aggregated classifier f can be thought of as an ap-
proximation to the true average f obtained by replacing
the probability distribution p with the bootstrap approxi-
mation to p obtained concentrating mass 1/n at each point

(Xi, ¥i)-

Variation II: weighting and combining
alternatives

- No subsampling, but instead each machine uses different
weights on the training data.

- Instead of equal voting, use weighted voting.

- Instead of voting, combine using other schemes.

Weak and strong learners

Kearns and Valiant in 1988/1989 asked if there exist two
types of hypothesis spaces of classifiers.

e Strong learners: Given a large enough dataset the clas-
sifier can arbitrarily accurately learn the target function
1 —7

e \Weak learners: Given a large enough dataset the clas-
sifier can barely learn the target function %—l— T

The hypothesis boosting problem: are the above equiva-
lent 7

The original Boosting (Schapire, 1990):
For Classification Only

1. Train a first classifier f1 on a training set drawn from

a probability p(x,y). Let e¢; be the obtained training
performance;

2. Train a second classifier f, on a training set drawn from
a probability p>(x,y) such that it has half its measure
on the event that A; makes a mistake and half on the
rest. Let ex be the obtained performance;

3. Train a third classifier fz3 on disagreements of the first
two — that is, drawn from a probability ps3(x,y) which
has its support on the event that A1 and h, disagree.
Let e3 be the obtained performance.

Boosting (cont.)

Main result: If ¢; < p for all 7, the boosted hypothesis

g = MagjorityVote (f1, f2, f3)

has training performance no worse than e = 3p? — 2p3

0.5

0.45

0.4

0.35 |

0.3

0.25 |

0.2

0.15

0.1

0.05

1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

e Maintain a probability distribution over training set;

e (GGenerate a sequence of classifiers in which the “next”
classifier focuses on sample where the “previous” clas-
sifier failed;

e Weigh machines according to their performance.

Adaboost

Given: aclass F ={f: X — {—1,1}} of weak learners and

the data {(z1,v1),...,(zn,yn)}, v; € {—1,1}. Initialize the
weights as wq1(i) = 1/n.
Fort=1,...1T"

1. Find a weak learner f; based on weights w;(7);

2. Compute the weighted error ¢, = Y71 wi (i) 1 (y; = fir(x;));

3. Compute the importance of f, as ax = 1/21In <1;€t>;

wy(3) e~ t¥ift(zi)

4. Update the distribution wy41(i) = 7 ,
Zy =" 4 wy(3) e~ tyihe (@),

Adaboost (cont.)

Adopt as final hypothesis

T
g(z) = sign (Z Cvtft(X))

t=1

Theory of Boosting

We define the margin of (x;,y;) according to the real valued
function g to be

margin(z;, vi) = y;g(x;).

Note that this notion of margin is different from the SVM
margin. This defines a margin for each training point!

Performance of Adaboost

Theorem: Let v+ = 1/2—¢ (how much better f; is on the
weighted sample than tossing a coin). Then

n T
S I(yig(z;) < 0) <] V1 — 492
t=1

1
ni=1

Gradient descent view of boosting

We would like to minimize
1 mn
= I(yig(z;) < 0)
"i=1

over the linear span of some base class . Think of F as
the weak learners.

Two problems: a) linear span of F can be huge and search-
ing for the minimizer directly is intractable. b) the indi-
cator is non-convex and the problem can be shown to be
NP-hard even for simple F.

Solution to b): replace the indicator I(yg(x) < 0) with a
convex upper bound ¢(yg(x)).

Solution to a)?

Gradient descent view of boosting

Let's search over the linear span of F step-by-step. At
each step t, we add a new function f; € F to the existing

t—1

Let Cy(g) = =37 d(yig(x;)). We wish to find f € F
to add to g such that Cy(g + €ft) decreases. The desired
direction is —7Cy4(g). We choose the new function f; such
that it has the greatest inner product with — 7 C(b' l.e. it
maximizes

Gradient descent view of boosting

One can verify that

1 mn
— < vCy(9), fr >= 5 > yife(z) 9 (yig(zy)).
i=1
Hence, finding f; maximizing — < vCy(g), ft > is equivalent
to minimizing the weighted error

n

> wi(DI(fe(z;) # i)

i=1
where
¢’ (yi9(x;))
> i—19'(y9(z;))

wt(i) =

For ¢(yg(z)) = e ¥9(2) this becomes Adaboost.

