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About this class


Goal To introduce the general setting of online learning.


To describe an online version of the RLS algorithm and analyze 

its performance. 

To discuss convergence results of the classical Perceptron algo­

rithm. 

To introduce the “experts” framework and prove mistake bounds 

in that framework. 

To show the relationship between online learning and the theory 

of learning in games. 



What is online learning?


Sample data are arranged in a sequence.


Each time we get a new input, the algorithm tries to predict the 

corresponding output. 

As the number of seen samples increases, hopefully the predictions 

improve. 



Assets


1. does not require storing all data samples


2. typically fast algorithms 

3. it is possible to give formal guarantees not assuming probabilis­

tic hypotheses (mistakes bounds) 

but... 

•	 performance can be worse than best batch algorithms


•	 generalization bounds always require some assumption on the 

generation of sample data 



Online setting


Sequence of sample data z1, z2, . . . , zn.


Each sample is an input-output couple zi = (xi, yi).


xi ∈ X ⊂ IRd , yi ∈ Y ⊂ IR.


In the classification case Y = {+1, −1}, in the regression case Y =


[−M, M ].


Loss function V : IR IR+ (e.g. E(w, y) = Θ(−yw) and
× Y → 
V (w, y) = 1 − yw +). | |

Estimators fi : X Y constructed using the first i data samples. → 



Online setting (cont.)


• initialization f0 

• for i = 1, 2, . . . , n 

• receive xi 

• predict fi−1(xi) 

• receive yi 

• update (fi−1, zi) → fi 

Note: storing efficiently fi−1 may require much less memory than 

storing all previous samples z1, z2, . . . , zi−1. 



∑ 

Goals 

Batch learning: reducing expected loss 

I[fn] = IEzV (fn(x), y) 

Online learning: reducing cumulative loss 

n 

V (fi−1(xi), yi) 
i=1 



( ) 

Online implementation of RLS ∗


update rule: For some choice of the sequences of positive para­

meters γi and λi, 

fi = fi−1 − γi (fi−1(xi) − yi)Kxi + λifi−1 , 

where K : X × X → IR is a pd kernel and for every x ∈ X, Kx(x′) = 

K(x, x′). 

Note: this rule has a simple justification assuming that the sample 

points (xi, yi) are i.i.d. from a probability distribution ρ. 

∗Online learning algorithms. Smale, Yao. 05 



∫ 

Interpretation of online RLS


For sake of simplicity, let us set λt = λ > 0. 

We would like to estimate the ideal regularized least-squares esti­

mator fρ
λ 

2fρ
λ = arg min (f(x) − y)2dρ(z) + �f�K. 

X×Yf∈HK 

From the definition above it can be showed that fρ
λ also satisfies 

IEz∼ρ[(fρ
λ(x) − y)Kx + λfρ

λ] = 0, 

therefore, fλ is also the equilibrium point of the averaged online ρ 

update equation 

fi = fi−1 − γiIEzi∼ρ[(fi−1(xi) − yi)Kxi + λfi−1]. 



( ) 

Generalization bound for online algorithm ∗


Theorem: Let fρ be the minimizer of the expected squared loss 

I[f ] (i.e. the regression function). Assume K(x, x) ≤ κ for some 

positive constant κ, and L−rfρ ∈ L2(X, ρX) for some r ∈ [1/2, 1]. K 
2r 1 

Then letting γi = c1i
−2r+1 and λi = c2i

−2r+1 for some constants c1 

and c2, with probability greater than 1 − δ, for all i ∈ IN it holds 

2r 
2r+1I[fi] ≤ I[fρ] + Ci

− 
, 

where C depends on M , κ, r, �L−rfρ�ρ and δ.K 

2r 

Note: the rates of convergence O i
−2r+1 are the best theoretically 

attainable under these assumptions.


∗Online learning as stochastic approximations of regularization paths. Tarres, 
Yao. 05 



The Perceptron Algorithm


We consider the classification problem: Y = {−1, +1}.


We deal with linear estimators fi(x) = ωi x, with ωi ∈ IRd .
· 

The 0-1 loss E(fi(x), y) = Θ(−y(ωi x)) is the natural choice in ·

the classification context. We will also consider the more tractable 

hinge-loss 

V (fi(x), y) = 1 − y(ωi x) +.| · |

Update rule: 

If Ei = E(fi−1(xi), yi) = 0 then ωi = ωi−1, otherwise 

ωi = ωi−1 + yixi 



The Perceptron Algorithm (cont.)


Passive-Aggressive strategy of the update rule.


If fi−1 classifies correctly xi, don’t move.


If fi−1 classifies incorrectly, try to increase the margin yi(ω xi). In
· 
fact, 

2 yi(ωi xi) = yi(ωi−1 xi) + yi �xi� 2 > yi(ωi−1 xi)· · · 



Perceptron Convergence Theorem ∗


Theorem: If the samples z1, . . . , zn are linearly separable, then pre­

senting them cyclically to the Perceptron algorithm, the sequence 

of weight vectors ωi will eventually converge. 

We will proof a more general result encompassing both the separable 

and the inseparable cases 

∗Pattern Classification. Duda, Hart, Stork, 01 



√ 
∑ 

Mistakes’ Bound ∗


Theorem: Assume �xi� ≤ R for every i = 1, 2, . . . , n. Then for 

every u ∈ IRd 

 √ 2 
√ n 

R�u� + √ ˆM ≤ Vi 
2 
 , 

i=1 

where V̂i = V (u xi, yi) and M is the total number of mistakes: 
∑ ∑

·
n nM = i=1 Ei = i=1 E(fi−1(xi), yi). 

∗Online Passive-Aggressive Algorithms. Crammer et al, 03 



Mistakes’ Bound (cont.)


•	 the boundedness conditions �xi� ≤ R is necessary. 

•	 in the separable case, there exists u∗ inducing margins yi(u
∗ xi) ≥·

1, and therefore null “batch” loss over sample points. The 

Mistakes’ Bound becomes 

u∗ 2 .M ≤ R2 � � 

•	 in the inseparable case, we can let u be the best possible linear 

separator. The bound compares the online performance with 

the best batch performance over a given class of competitors. 



∑

Proof 

The terms ωi u increase as i increases ·

1. If Ei = 0 then ωi u = ωi−1 u· ·

2. If Ei = 1, since V̂i = 1 − yi(xi u) +,| · |

ωi u = ωi−1 u + yi(xi u) ≥ ωi−1 u + 1 − V̂i.· · · ·

3. Hence, in both cases ωi u ≥ ωi−1 u + (1 − V̂i)Ei· ·

4. Summing up, ωn · u ≥ M− n ˆ
i=1 ViEi. 



�

�

Proof (cont.) 

The terms �ωi� do not increase too quickly 

1. If E = 0 then �ωi�2 = ωi−1�2 
i 

2. If E = 1, since yi(ωi−1 xi) ≤ 0, i ·

ωi� 2 = (ωi−1 + yixi) · (ωi−1 + yixi) 

= �ωi−1� 2 + �xi� 2 + 2yi(ωi−1 ωi−1� 2 + R2 .· xi) ≤ �

3. Summing up, �ωn�2 = .MR2 



∑ 

√ √ 

∑ ∑ ∑

√ 

√ 
∑ 

Proof (cont.)


Using the estimates for ωn u and �ωn�2, and applying Cauchy-·
Schwartz inequality 

1. By C-S, ωn · u�, hence u ≤ �ωn��

n


M− ˆ
ViEi ≤ ωn · u ≤ �ωn��u� ≤
√
MR�u�

i=1 

n ˆ ˆ2. Finally, by C-S, i=1 ViEi ≤ n V 2 n
i=1 Ei 

2, hence i=1 i 

√ ˆ .
√
M− 

√ n 

Vi 
2 ≤ R�u�

i=1 



The Experts Framework


We will focus on the classification case.


Suppose we have a pool of prediction strategies, called experts. 

Denote by E = {E1, . . . , En}. 

Each expert predicts yi based on xi. 

We want to combine these experts to produce a single master al­

gorithm for classification and prove bounds on how much worse it 

is than the best expert. 



The Halving Algorithm∗


Suppose all the experts are functions (their predictions for a point 

in the space do not change over time) and at least one of them is 

consistent with the data. 

At each step, predict what the majority of experts that have not 

made a mistake so far would predict. 

Note that all inconsistent experts get thrown away!


Maximum of log2( E ) errors. | |

But what if there is no consistent function in the pool? (Noise in 

the data, limited pool, etc.) 

∗Barzdin and Freivald, On the prediction of general recursive functions, 1972, 
Littlestone and Warmuth, The Weighted Majority Algorithm, 1994 



∑ 

∑ 

The Weighted Majority Algorithm∗


Associate a weight wi with every expert. Initialize all weights to 1. 

At example t: 

|E|
= wiI[Ei predicted yt = −1] q−1 

i=1 

|E|
q1 = wiI[Ei predicted yt = 1] 

i=1 

Predict yt = 1 if q1 > q−1, else predict yt = −1


If the prediction is wrong, multiply the weights of each expert that 

made a wrong prediction by 0 ≤ β < 1. 

Note that for β = 0 we get the halving algorithm. 

∗Littlestone and Warmuth, 1994 



Mistake Bound for WM


For some example t let Wt = 
∑|E| 

= q−1 + q1i=1 wi 

Then when a mistake occurs Wt+1 ≤ uWt where u < 1 

Therefore W0um Wn≥

Or m ≤ log(W0/Wn) 
log(1/u) 

log(W0/Wn)Then m ≤
log(2/(1+β))

(setting u = 1+β 
2 ) 



Mistake Bound for WM (contd.)


Why? Because when a mistake is made, the ratio of total weight


after the trial to total weight before the trial is at most (1 + β)/2.


W.L.o.G. assume WM predicted −1 and the true outcome was +1. 

Then new weight after trial is: 

2 (q−1 − q1) 
1+ββq−1 + q1 ≤ βq−1 + q1 + 1−β = 2 (q−1 + q1. 

The main theorem (Littlestone & Warmuth): 

Assume mi is the number of mistakes made by the ith expert on a 

sequence of n instances and that E = k. Then the WM algorithm | |
makes at most the following number of mistakes:


log(k) + mi log(1/β) 

log(2/(1 + β)) 

Big fact: Ignoring leading constants, the number of errors of the


pooled predictor is bounded by the sum of the number of errors of


the best expert in the pool and the log of the number of experts!




Finishing the Proof


W0 = k and Wn ≥ βmi


log(W0/Wn) = log(W0) − log(Wn)


log(Wn) > mi logβ, so − log(Wn) < mi log(1/β)


Therefore log(W0) − log(Wn) < log k + mi log(1/β)




A Whirlwind Tour of Game Theory


Players choose actions, receive rewards based on their own actions 

and those of the other players. 

A strategy is a specification for how to play the game for a player. 

A pure strategy defines, for every possible choice a player could 

make, which action the player picks. A mixed strategy is a prob­

ability distribution over strategies. 

A Nash equilibrium is a profile of strategies for all players such 

that each player’s strategy is an optimal response to the other 

players’ strategies. Formally, a mixed-strategy profile σi is a Nash ∗ 
equilibrium if for all players i: 

i(σi 
∗ ) ≥ i i i u ∗, σ
−i u (s , σ∗

−i)∀s ∈ Si 



Some Games: Prisoners’ Dilemma


Cooperate Defect 

Cooperate +3, +3 0, +5 
Defect +5, 0 +1, +1 

Nash equilibrium: Both players defect!




Some Games: Matching Pennies


H T 

H 
T 

+1, −1 
−1, +1 

−1, +1 
+1, −1 

Nash equilibrium: Both players randomize half and half between 

actions. 



{ 

Learning in Games∗


Suppose I don’t know what payoffs my opponent will receive.


I can try to learn her actions when we play repeatedly (consider 

2-player games for simplicity). 

Fictitious play in two player games. Assumes stationarity of oppo-

nent’s strategy, and that players do not attempt to influence each 

others’ future play. Learn weight functions 

κt
i(s−i) = κi

t−1(s
−i) + 

1 if s−t−
i 
1 = s−i 

0 otherwise 

∗Fudenberg & Levine, The Theory of Learning in Games, 1998




Calculate probabilities of the other player playing various moves as:


γt
i(s−i) = 

∑ 

κt
i(s−i) 

˜ t(˜s−i∈S−i κi s−i) 

Then choose the best response action. 



Fictitious Play (contd.)


If fictitious play converges, it converges to a Nash equilibrium.


If the two players ever play a (strict) NE at time t, they will play it 
thereafter. (Proofs omitted) 

If empirical marginal distributions converge, they converge to NE. 
But this doesn’t mean that play is similar! 

t Player1 Action Player2 Action κ1 
T κ2 

T 
1 T T (1.5, 3) (2, 2.5) 
2 T H (2.5, 3) (2, 3.5) 
3 T H (3.5, 3) (2, 4.5) 
4 H H (4.5, 3) (3, 4.5) 
5 H H (5.5, 3) (4, 4.5) 
6 H H (6.5, 3) (5, 4.5) 
7 H T (6.5, 4) (6, 4.5) 

Cycling of actions in fictitious play in the matching pennies

game




Universal Consistency


Persistent miscoordination: Players start with weights of (1, 
√

2)


A B 

A 0, 0 1, 1 
B 1, 1 0, 0 

A rule ρi is said to be ǫ-universally consistent if for any ρ−i 

ilim supmax u (σi, γt
i) − 1 ∑ 

ui(ρi
t(ht−1)) ≤ ǫ 

σi T tT→∞ 

almost surely under the distribution generated by (ρi, ρ−i), where 

ht−1 is the history up to time t−1, available for the decision-making 

algorithm at time t. 



Back to Experts


Bayesian learning cannot give good payoff guarantees.


Define universal expertise analogously to universal consistency, and 

bound regret (lost utility) with respect to the best expert, which is 

a strategy. 

The best response function is derived by solving the optimization 

problem 

i�i imax 
Ii 

I ut + λvi(I ) 

�iut is the vector of average payoffs player i would receive by using 

each of the experts 

Ii is a probability distribution over experts 



∑ 

λ is a small positive number.


Under technical conditions on v, satisfied by the negative entropy:


σ(s) logσ(s)− 
s 

we retrieve the exponential weighting scheme, and for every ǫ there 

is a λ such that our procedure is ǫ-universally expert. 


