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Active learning motivation

Machine learning applications, e.g.
Medical diagnosis
Document/webpage classification
Speech recognition

Unlabeled data is abundant, but labels are expensive.

Active learning is a useful model here.
Allows for intelligent choices of which examples to label.

Label-complexity: the number of labeled examples required to 
learn via active learning 

can be much lower than the PAC sample complexity!



Supervised learning

Given access to labeled data (drawn iid from an unknown underlying 
distribution P), want to learn a classifier chosen from hypothesis class H, 
with misclassification rate <ε. 

Sample complexity characterized by d = VC dimension of H.
If data is separable, need roughly d/ε labeled samples.

Slide credit: Sanjoy Dasgupta



Active learning

In many situations unlabeled data is easy to come by, but there 
is a charge for each label.

What is the minimum number of labels needed to achieve the 
target error rate?

Slide credit: S. Dasgupta



Active learning variants
There are several models of active learning: 

Query learning (a.k.a. Membership queries)
Selective sampling
Active model selection 
Experiment design

Various evaluation frameworks:
Regret minimization
Minimize label-complexity to reach fixed error rate
Label-efficiency (fixed label budget)

We focus on classification, though regression AL exists too.



Membership queries
Earliest model of active learning in theory work [Angluin 1992]

X = space of possible inputs, like {0,1}n

H = class of hypotheses

Target concept h* ∈ H to be identified exactly.
You can ask for the label of any point in X: no unlabeled data.

H0 = H
For t = 1,2,…

pick a point x ∈ X and query its label h*(x)
let Ht = all hypotheses in Ht-1 consistent with (x, h*(x))

What is the minimum number of “membership queries” needed to 
reduce H to just {h*}?

Slide credit: S. Dasgupta



X = {0,1}n

H = AND-of-positive-literals, like x1 ∧ x3 ∧ x10

S = { }  (set of AND positions)
For i = 1 to n:

ask for the label of (1,…,1,0,1,…,1) [0 at position i]
if negative: S = S ∪ {i}

Total: n queries 

General idea: synthesize highly informative points.
Each query cuts the version space -- the set of consistent hypotheses -
- in half.

Slide credit: S. Dasgupta

Membership queries: example



Problem

Many results in this framework, even for complicated 
hypothesis classes.

[Baum and Lang, 1991] tried fitting a neural net to handwritten 
characters.
Synthetic instances created were incomprehensible to humans!

[Lewis and Gale, 1992] tried training text classifiers.
“an artificial text created by a learning algorithm is unlikely to 
be a legitimate natural language expression, and probably would 
be uninterpretable by a human teacher.”

Slide credit: S. Dasgupta



Selective sampling
[Cohn, Atlas & Ladner, 1992]

Selective sampling:
Given: pool (or stream) of unlabeled examples, x, drawn i.i.d. 

from input distribution.
Learner may request labels on examples in the pool/stream.

(Noiseless) oracle access to correct labels, y.
Constant cost per label

The error of any classifier h is measured on distribution P:
err(h) = P(h(x) ≠ y)

Goal: minimize label-complexity to learn the concept to a 
fixed accuracy.



Can adaptive querying really help?

[CAL92, D04]: Threshold functions on the real line 
hw(x) = 1(x ≥ w),     H = {hw: w ∈ R}

Start with 1/ε unlabeled points

Binary search – need just log 1/ε labels, from which the rest can be 
inferred! Exponential improvement in sample complexity.

w

+-

Slide credit: S. Dasgupta



More general hypothesis classes

For a general hypothesis class with VC dimension d, is a 
“generalized binary search” possible?

Random choice of queries d/ε labels
Perfect binary search d log 1/ε labels

Where in this large range does the label complexity of active 
learning lie?

We’ve already handled linear separators in 1-d…

Slide credit: S. Dasgupta



[1] Uncertainty sampling

Maintain a single hypothesis, based on labels seen so far.
Query the point about which this hypothesis is most “uncertain”.

Problem: confidence of a single hypothesis may not accurately 
represent the true diversity of opinion in the hypothesis class.
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[2] Region of uncertainty

current version space
Suppose data lies 
on circle in R2; 
hypotheses are 
linear separators.

(spaces X, H 
superimposed)

region of uncertainty 
in data space

Current version space: portion of H consistent with labels so far.
“Region of uncertainty” = part of data space about which there is 
still some uncertainty (ie. disagreement within version space)

++

Slide credit: S. Dasgupta



current version spaceData and 
hypothesis spaces, 
superimposed:

(both are the 
surface of the unit 
sphere in Rd)

region of uncertainty 
in data space

Algorithm [CAL92]:
of the unlabeled points which lie in the region of uncertainty, 
pick one at random to query.

Slide credit: S. Dasgupta

[2] Region of uncertainty



[2] Region of uncertainty

Number of labels needed depends on H and also on P.

Special case: H = {linear separators in Rd}, P = uniform 
distribution over unit sphere. 

Theorem [Balcan, Beygelzimer & Langford ICML ‘06]:  
Õ(d2 log 1/ε) labels are needed to reach a hypothesis with error 
rate < ε.

Supervised learning: Θ(d/ε) labels.

Slide credit: S. Dasgupta



[3] Query-by-committee

[Seung, Opper, Sompolinsky, 1992; Freund, Seung, Shamir, Tishby 1997]

First idea: Try to rapidly reduce volume of version space?

Problem: doesn’t take data distribution into account.

H:

Which pair of hypotheses is closest? Depends on data distribution P.
Distance measure on H: d(h,h’) = P(h(x) ≠ h’(x))

Slide credit: S. Dasgupta



[3] Query-by-committee

First idea: Try to rapidly reduce volume of version space?

Problem: doesn’t take data distribution into account.

H:

To keep things simple, say d(h,h’) ∝ Euclidean distance in this 
picture.

Error is likely to 
remain large!

Slide credit: S. Dasgupta



[3] Query-by-committee

Elegant scheme which decreases volume in a manner which is 
sensitive to the data distribution.

Bayesian setting: given a prior π on H

H1 = H
For t = 1, 2, 

receive an unlabeled point xt drawn from P
[informally: is there a lot of disagreement about xt in Ht?]
choose two hypotheses h,h’ randomly from (π, Ht)
if h(xt) ≠ h’(xt): ask for xt’s label
set Ht+1

Slide credit: S. Dasgupta



[3] Query-by-committee

For t = 1, 2, …
receive an unlabeled point xt drawn from P
choose two hypotheses h,h’ randomly from (π, Ht)
if h(xt) ≠ h’(xt): ask for xt’s label
set Ht+1

Observation: the probability of getting pair (h,h’) in the inner 
loop (when a query is made) is proportional to π(h) π(h’) d(h,h’).

Ht

vs.

Slide credit: S. Dasgupta



[3] Query-by-committee

Label bound, Theorem [FSST97] : 
For H = {linear separators in Rd}, P = uniform distribution, then Õ(d 
log 1/ε) labels to reach a hypothesis with error < ε.

Implementation: need to randomly pick h according to (π, Ht).

e.g. H = {linear separators in Rd}, π = uniform distribution:

Ht
How do you pick a 
random point from a 
convex body?

Slide credit: S. Dasgupta

See e.g. [Gilad-Bachrach, Navot & 
Tishby NIPS ‘05]



Online active learning

Under Bayesian assumptions, QBC can learn a half-space 
through the origin to generalization error ε, using 
Õ(d log 1/ε) labels.

But not online: space required, and time complexity of 
the update both scale with number of seen mistakes!

Online algorithms:
See unlabeled data streaming by, one point at a time
Can query current point’s label, at a cost
Can only maintain current hypothesis (memory bound)



Online learning: related work

Standard (supervised) Perceptron: a simple online
algorithm:
If yt ≠ SGN(vt · xt), then: Filtering rule

vt+1 = vt + yt xt Update step

Distribution-free mistake bound O(1/γ2), if exists margin γ.

Theorem [Baum‘89]: Perceptron, given sequential labeled 
examples from the uniform distribution, can converge to 
generalization error ε after Õ(d/ε2) mistakes.



Fast online active learning
[Dasgupta, Kalai & M, COLT ‘05]

A lower bound for Perceptron in active learning context of 
Ω(1/ε2) labels.

A modified Perceptron update with a Õ(d log 1/ε) mistake
bound.

An active learning rule and a label bound of Õ(d log 1/ε).

A bound of Õ(d log 1/ε) on total errors (labeled or not). 



Selective sampling, online constraints
Sequential selective sampling framework:

Unlabeled examples, xt, are received one at a time, 
sampled i.i.d. from the input distribution.

Learner makes a prediction at each time-step. 
A noiseless oracle to label yt, can be queried at a cost.

Goal: minimize number of labels to reach error ε.
ε is the error rate (w.r.t. the target) on the input distribution.

Online constraints:
Space:  Learner cannot store all previously seen examples (and 
then perform batch learning).
Time: Running time of learner’s belief update step should not 
scale with number of seen examples/mistakes.



AC Milan vs. Inter Milan



Problem framework

u
vt

θt

Target:
Current hypothesis:

Error region:

Assumptions:
Separability
u is through origin
x~Uniform on S

error rate:

ξt



OPT

ε

Fact: Under this framework, any algorithm requires 
Ω(d log 1/ε) labels to output a hypothesis within 
generalization error at most ε.

Proof idea: Can pack (1/ε)d spherical
caps of radius ε on surface of unit
ball in Rd. The bound is just the 
number of bits to write the answer.



Perceptron

Perceptron update: vt+1 = vt + yt xt

→ error does not decrease monotonically.

uvt

xt

vt+1



Lower bound on labels for Perceptron
Theorem [DKM05]: The Perceptron algorithm, using any 

active learning rule, requires Ω(1/ε2) labels to reach 
generalization error ε w.r.t. the uniform distribution.

Proof idea: Lemma: For small θt, the Perceptron update will 
increase θt unless kvtk

is large: Ω(1/sin θt). But, kvtk growth rate:

So need t ≥ 1/sin2θt.

Under uniform,
εt ∝ θt ≥ sin θt.

uvt

xt

vt+1



A modified Perceptron update
Standard Perceptron update:

vt+1 = vt + yt xt

Instead, weight the update by “confidence” w.r.t. current 
hypothesis vt:
vt+1 = vt + 2 yt |vt · xt| xt (v1 = y0x0)   

(similar to update in [Blum et al.‘96] for noise-tolerant learning)

Unlike Perceptron:
Error decreases monotonically:

cos(θt+1) = u · vt+1 = u · vt + 2 |vt · xt||u · xt|
≥ u · vt = cos(θt)

kvtk =1 (due to factor of 2)



A modified Perceptron update

Perceptron update: vt+1 = vt + yt xt

Modified Perceptron update:  vt+1 = vt + 2 yt |vt · xt| xt

uvt

xt

vt+1vt+1

vt

vt+1



Mistake bound
Theorem [DKM05]: In the supervised setting, the modified 

Perceptron converges to generalization error ε after 
Õ(d log 1/ε) mistakes.

Proof idea: The exponential convergence follows from a 
multiplicative decrease in θt:

On an update, 

→Lower bound 2|vt · xt||u · xt|, with high probability, using 
distributional assumption.



Mistake bound

a

{
k

{x : |a · x| · k} =

Theorem 2: In the supervised setting, the modified 
Perceptron converges to generalization error ε after 
Õ(d log 1/ε) mistakes.

Lemma (band): For any fixed a: kak=1, γ · 1 and for x~U on S:

Apply to |vt · x| and |u · x| ⇒ 2|vt · xt||u · xt| is
large enough in expectation (using size of ξt).



Active learning rule

vt

st

u

{

Goal: Filter to label just those points in the error region.
→ but θt, and thus ξt unknown!

Define labeling region:

Tradeoff in choosing threshold st:
If too high, may wait too long for an error.
If too low, resulting update is too small.

makes 

constant.

→ But θt unknown!  

L



Active learning rule

vt

st

u

{

Choose threshold st adaptively: 
Start high. 
Halve, if no error in R consecutive labels.

Start with threshold st high: 

After R consecutive labeled points,
if no errors: 

L



Label bound

Theorem [DKM05]: In the active learning setting, the 
modified Perceptron, using the adaptive filtering rule, will 
converge to generalization error ε after Õ(d log 1/ε)
labels.

Corollary [DKM05] : The total errors (labeled and 
unlabeled) will be Õ(d log 1/ε).



Proof technique
Proof outline:  We show the following lemmas hold with 

sufficient probability:

Lemma 1. st does not decrease too quickly: 

Lemma 2. We query labels on a constant fraction of ξt.

Lemma 3. With constant probability the update is good.

By algorithm, ~1/R labels are mistakes. ∃ R = Õ(1).

⇒ Can thus bound labels and total errors by mistakes.



[DKM05] in context
samples        mistakes         labels       total errors     online?

PAC
complexity
[Long‘03]
[Long‘95]

Perceptron
[Baum‘97]

CAL
[BBL‘06]

QBC
[FSST‘97]

[DKM‘05]

Õ(d/ε)  
Ω(d/ε)

Õ(d/ε3)
Ω(1/ε2)

Õ(d/ε2)
Ω(1/ε2) Ω(1/ε2)

Õ((d2/ε) 
log 1/ε)

Õ(d2 log 1/ε) Õ(d2 log 1/ε)

Õ(d/ε log 1/ε) Õ(d log 1/ε) Õ(d log 1/ε)

Õ(d/ε log 1/ε) Õ(d log 1/ε) Õ(d log 1/ε) Õ(d log 1/ε)



Lower bounds on label complexity
For linear separators in R1, need just log 1/ε labels.
Theorem [D04]: when H = {non-homogeneous linear separators in 
R2}:  some target hypotheses require 1/ε labels to be queried!

h3h2

h0

h1

ε fraction of distribution

Need 1/ε labels to distinguish 
between h0, h1, h2, …, h1/ε !

Consider any distribution 
over the circle in R2.

Slide credit: S. Dasgupta

→ Leads to analagous bound: 
Ω(1/ε) for homogeneous linear 
separators in Rd.



A fuller picture

For non-homogenous linear separators in R2: some bad target 
hypotheses which require 1/ε labels,
but “most” require just O(log 1/ε) labels…

good

bad

Slide credit: S. Dasgupta



A view of the hypothesis space

H = {non-homogeneous linear separators in R2}

All-positive
hypothesis

All-negative
hypothesis

Good region

Bad regions
Slide credit: S. Dasgupta



Geometry of hypothesis space

H = any hypothesis class, of VC dimension d < ∞.

P = underlying distribution of data.

(i) Non-Bayesian setting: no probability measure on H

(ii) But there is a natural (pseudo) metric: d(h,h’) = P(h(x) ≠ h’(x))

(iii) Each point x defines a cut through H

h

h’
H

x

Slide credit: S. Dasgupta



Label upper bounding technique
[Dasgupta NIPS‘05]

(h0 = target hypothesis)

Proof technique: analyze how many labels until the diameter of 
the remaining version space is at most ε.

h0

H

Slide credit: S. Dasgupta



Searchability index [D05]

Accuracy ε
Data distribution P
Amount of unlabeled data

Each hypothesis h ∈ H has a 
“searchability index” ρ(h)

ρ(h) ∝ min(pos mass of h, neg mass of h), but never < ε

ε · ρ(h) · 1, bigger is better

ε 1/2

1/4

1/5

ε

1/4

1/5

Example: linear separators in R2, data on a circle: 

1/3

1/3

All positive 
hypothesis

H

Slide credit: S. Dasgupta



Searchability index [D05]

Accuracy ε
Data distribution P
Amount of unlabeled data

Each hypothesis h ∈ H has a 
“searchability index” ρ(h)

Searchability index lies in the range: ε · ρ(h) · 1

Upper bound. For any H of VC-dim d<∞, there is an active 
learning scheme* which identifies (within accuracy · ε) any 

h ∈ H, with a label complexity of at most:                             

Lower bound. For any h ∈ H, any active learning scheme for the 
neighborhood B(h, ρ(h)) has a label complexity of at least: 

[When ρ(h) À ε: active learning helps a lot.]
Slide credit: S. Dasgupta



Example: the 1-d line

Searchability index lies in range: ε · ρ(h) · 1

Theorem [D05]:           · # labels needed ·

Example: Threshold functions on the line

w

+-

Result: ρ = 1/2 for any target hypothesis and any input 
distribution

Slide credit: S. Dasgupta



Open problem: efficient, general AL
[M, COLT Open Problem ‘06]: Efficient algorithms for 

active learning under general input distributions, D.
→ Current UB’s for general distributions are based on 
intractable schemes!

Provide an algorithm such that w.h.p.:
1. After L label queries, algorithm's hypothesis v obeys:

Px ∼ D[v(x) ≠ u(x)] < ε.
2. L is at most the PAC sample complexity, and for a general 

class of input distributions, L is significantly lower.
3. Total running time is at most poly(d, 1/ε).

Specific variant: homogeneous linear separators, realizable case, 
D known to learner.



Open problem: efficient, general AL
[M, COLT Open Problem ‘06]: Efficient algorithms for 

active learning under general input distributions, D.

Other open variants:
Input distribution, D, is unknown to learner.
Agnostic case, certain scenarios ([Kääriäinen, NIPS 

Foundations of Active Learning workshop ‘05]: negative   
result for general agnostic setting).

Add the online constraint: memory and time complexity 
(of the online update) must not scale with number 
of seen labels or mistakes.

Same goal, other concept classes, or a general concept 
learner.



Other open problems
Extensions to DKM05:

Relax distributional assumptions.
Uniform is sufficient but not necessary for proof.

Relax realizable assumption.
Analyze margin version

for exponential convergence, without d dependence.

Testing issue: Testing the final hypothesis takes 1/ε labels! 
→ Is testing an inherent part of active learning?

Cost-sensitive labels

Bridging theory and practice.
How to benchmark AL algorithms?



Thank you!
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