Active Learning

9.520 Class 22, 03 May 2006 Claire Monteleoni MIT CSAIL

Outline

Motivation

Historical framework: query learning

Current framework: selective sampling

Some recent results

Open problems

Active learning motivation

Machine learning applications, e.g.

Medical diagnosis

Document/webpage classification

Speech recognition

Unlabeled data is abundant, but labels are expensive.

Active learning is a useful model here.

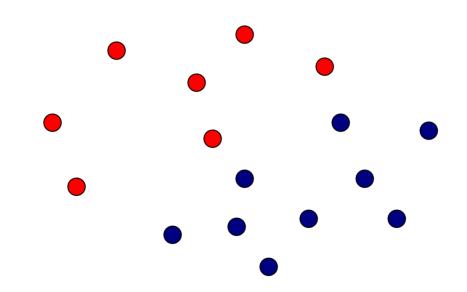
Allows for intelligent choices of which examples to label.

Label-complexity: the number of labeled examples required to learn via active learning

→ can be much lower than the PAC sample complexity!

Supervised learning

Given access to labeled data (drawn iid from an unknown underlying distribution P), want to learn a classifier chosen from hypothesis class H, with misclassification rate < ε.

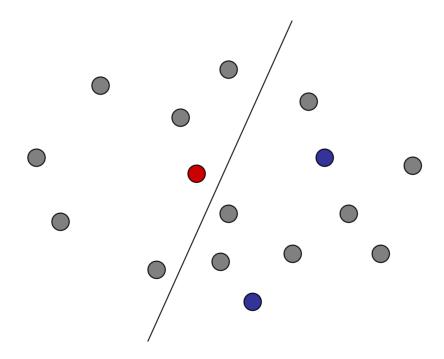


Sample complexity characterized by d = VC dimension of H. If data is *separable*, need roughly d/ϵ labeled samples.

Slide credit: Sanjoy Dasgupta

Active learning

In many situations unlabeled data is easy to come by, but there is a charge for each label.



What is the minimum number of labels needed to achieve the target error rate?

Active learning variants

There are several models of active learning:

Query learning (a.k.a. Membership queries)

Selective sampling

Active model selection

Experiment design

Various evaluation frameworks:

Regret minimization

Minimize label-complexity to reach fixed error rate

Label-efficiency (fixed label budget)

We focus on classification, though regression AL exists too.

Membership queries

Earliest model of active learning in theory work [Angluin 1992]

```
X = space of possible inputs, like \{0,1\}^n H = class of hypotheses
```

Target concept $h^* \in H$ to be identified *exactly*. You can ask for the label of any point in X: *no unlabeled data*.

```
H_0 = H
For t = 1,2,...
pick a point x \in X and query its label h^*(x)
let H_t = \text{all hypotheses in } H_{t-1} \text{ consistent with } (x, h^*(x))
```

What is the minimum number of "membership queries" needed to reduce H to just {h*}?

Slide credit: S. Dasgupta

Membership queries: example

```
\begin{split} X &= \{0,1\}^n \\ H &= AND\text{-of-positive-literals, like } x_1 \wedge x_3 \wedge x_{10} \\ S &= \{\} \text{ (set of AND positions)} \\ \text{For } i &= 1 \text{ to } n; \\ \text{ask for the label of } (1,\ldots,1,0,1,\ldots,1) \text{ [0 at position i]} \\ \text{if negative: } S &= S \cup \{i\} \end{split}
```

Total: n queries

General idea: synthesize highly informative points.

Each query cuts the *version space* -- the set of consistent hypotheses -- in half.

Problem

Many results in this framework, even for complicated hypothesis classes.

[Baum and Lang, 1991] tried fitting a neural net to handwritten characters.

Synthetic instances created were incomprehensible to humans!

[Lewis and Gale, 1992] tried training text classifiers.

"an artificial text created by a learning algorithm is unlikely to be a legitimate natural language expression, and probably would be uninterpretable by a human teacher."

Selective sampling [Cohn, Atlas & Ladner, 1992]

Selective sampling:

Given: pool (or stream) of unlabeled examples, *x*, drawn i.i.d. from input distribution.

Learner may request labels on examples in the pool/stream.

(Noiseless) oracle access to correct labels, y.

Constant cost per label

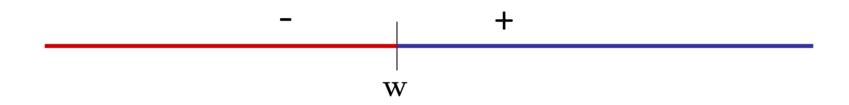
The error of any classifier h is measured on distribution *P*:

$$err(h) = P(h(x) \neq y)$$

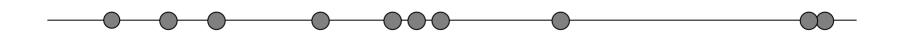
Goal: minimize label-complexity to learn the concept to a fixed accuracy.

Can adaptive querying really help?

[CAL92, D04]: Threshold functions on the real line $h_w(x) = 1(x \ge w), \quad H = \{h_w : w \in R\}$



Start with 1/ε *unlabeled* points



Binary search – need just log 1/ε labels, from which the rest can be inferred! Exponential improvement in sample complexity.

Slide credit: S. Dasgupta

More general hypothesis classes

For a general hypothesis class with VC dimension d, is a "generalized binary search" possible?

Random choice of queries

Perfect binary search

d/ε labels

d log 1/ε labels

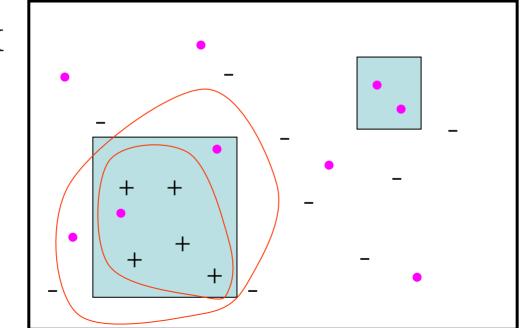
Where in this large range does the label complexity of active learning lie?

We've already handled linear separators in 1-d...

[1] Uncertainty sampling

Maintain a single hypothesis, based on labels seen so far. Query the point about which this hypothesis is most "uncertain".

Problem: confidence of a single hypothesis may not accurately represent the true diversity of opinion in the hypothesis class.



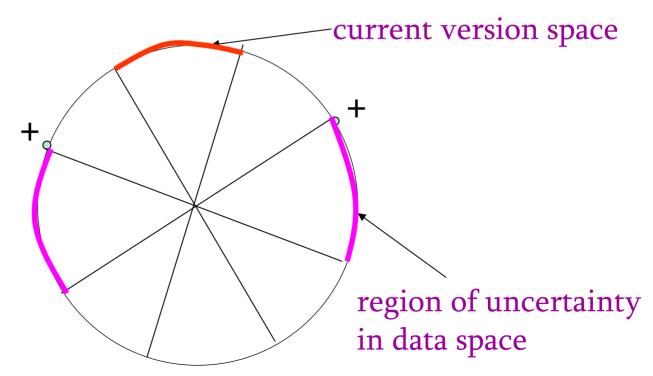
'Slide credit: S. Dasgupta

[2] Region of uncertainty

Current version space: portion of H consistent with labels so far. "Region of uncertainty" = part of data space about which there is still some uncertainty (ie. disagreement within version space)

Suppose data lies on circle in R²; hypotheses are linear separators.

(spaces X, H superimposed)



Slide credit: S. Dasgupta

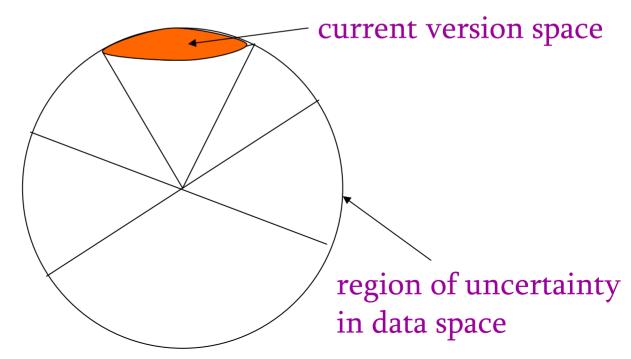
[2] Region of uncertainty

Algorithm [CAL92]:

of the unlabeled points which lie in the region of uncertainty, pick one at random to query.

Data and hypothesis spaces, superimposed:

(both are the surface of the unit sphere in R^d)



Slide credit: S. Dasgupta

[2] Region of uncertainty

Number of labels needed depends on H and also on P.

Special case: H = {linear separators in R^d}, P = uniform distribution over unit sphere.

Theorem [Balcan, Beygelzimer & Langford ICML '06]: $\tilde{O}(d^2 \log 1/\epsilon)$ labels are needed to reach a hypothesis with error rate $< \epsilon$.

Supervised learning: $\Theta(d/\epsilon)$ labels.

[Seung, Opper, Sompolinsky, 1992; Freund, Seung, Shamir, Tishby 1997]

First idea: Try to rapidly reduce volume of version space?

Problem: doesn't take data distribution into account.

Which pair of hypotheses is closest? Depends on data distribution P. Distance measure on H: $d(h,h') = P(h(x) \neq h'(x))$

First idea: Try to rapidly reduce volume of version space?

Problem: doesn't take data distribution into account.

To keep things simple, say $d(h,h') \propto \text{Euclidean distance}$ in this picture.

H:

Error is likely to remain large!

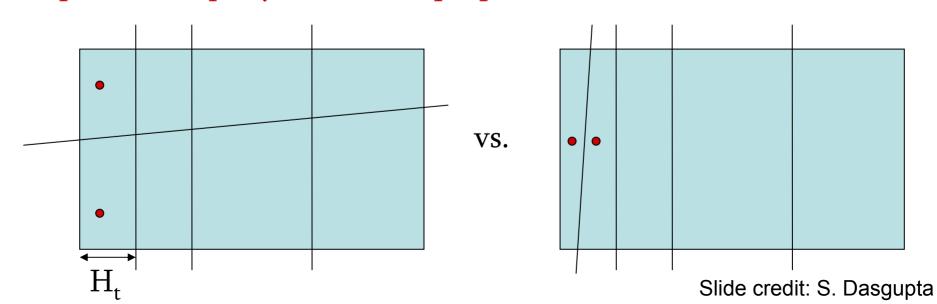
Elegant scheme which decreases volume in a manner which is sensitive to the data distribution.

Bayesian setting: given a prior π on H

```
\begin{split} &H_1 = H \\ &For\ t = 1,\ 2, \\ &receive\ an\ unlabeled\ point\ x_t\ drawn\ from\ P \\ &[informally:\ is\ there\ a\ lot\ of\ disagreement\ about\ x_t\ in\ H_t?] \\ &choose\ two\ hypotheses\ h,h'\ randomly\ from\ (\pi,\ H_t) \\ &if\ h(x_t) \neq h'(x_t):\ ask\ for\ x_t's\ label \\ &set\ H_{t+1} \end{split}
```

```
For t = 1, 2, ... receive an unlabeled point x_t drawn from P choose two hypotheses h,h' randomly from (\pi, H_t) if h(x_t) \neq h'(x_t): ask for x_t's label set H_{t+1}
```

Observation: the probability of getting pair (h,h') in the inner loop (when a query is made) is proportional to $\pi(h)$ $\pi(h')$ $\pi(h')$.

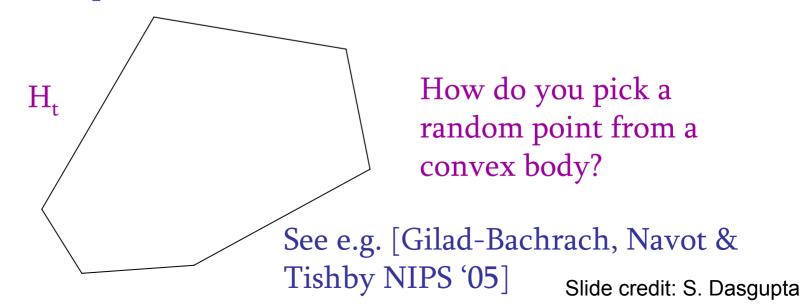


Label bound, Theorem [FSST97]:

For $H = \{\text{linear separators in } R^d\}$, P = uniform distribution, then $\tilde{O}(d \log 1/\epsilon)$ labels to reach a hypothesis with error $< \epsilon$.

Implementation: need to randomly pick h according to (π, H_t) .

e.g. $H = \{\text{linear separators in } R^d\}, \pi = \text{uniform distribution:}$



Online active learning

Under Bayesian assumptions, QBC can learn a half-space through the origin to generalization error ϵ , using $\tilde{O}(d \log 1/\epsilon)$ labels.

→ But not online: space required, and time complexity of the update both scale with number of seen mistakes!

Online algorithms:

See unlabeled data streaming by, one point at a time Can query current point's label, at a cost Can only maintain current hypothesis (memory bound)

Online learning: related work

Standard (supervised) Perceptron: a simple online algorithm:

If
$$y_t \neq SGN(v_t \cdot x_t)$$
, then: Filtering rule $v_{t+1} = v_t + y_t x_t$ Update step

Distribution-free mistake bound O($1/\gamma^2$), if exists margin γ .

Theorem [Baum'89]: Perceptron, given sequential labeled examples from the uniform distribution, can converge to generalization error ε after $\tilde{O}(d/\varepsilon^2)$ mistakes.

Fast online active learning [Dasgupta, Kalai & M, COLT '05]

A lower bound for Perceptron in active learning context of $\Omega(1/\epsilon^2)$ labels.

A modified Perceptron update with a $\tilde{O}(d \log 1/\epsilon)$ mistake bound.

An active learning rule and a label bound of $\tilde{O}(d \log 1/\epsilon)$.

A bound of $\tilde{O}(d \log 1/\epsilon)$ on total errors (labeled or not).

Selective sampling, online constraints

Sequential selective sampling framework:

Unlabeled examples, x_t , are received one at a time, sampled i.i.d. from the input distribution.

Learner makes a prediction at each time-step.

A noiseless oracle to label y_t , can be queried at a cost.

Goal: minimize number of *labels* to reach error ε.

ε is the error rate (w.r.t. the target) on the input distribution.

Online constraints:

Space: Learner cannot store all previously seen examples (and then perform batch learning).

Time: Running time of learner's belief update step should not scale with number of seen examples/mistakes.

AC Milan vs. Inter Milan

Problem framework

$$S = \left\{ \left. x \in \mathbb{R}^d \; \middle| \; \left\| x \right\| = 1 \right\}, \;\; x_t \in S, \;\; y_t \in \{-1, +1\} \right\}$$

Target: $u: y_t(u \cdot x_t) > 0 \quad \forall t, \quad ||u|| = 1$

Current hypothesis: v_t

$$m{ heta}_t = rccos(u \cdot \hat{v}_t) \; : \; \hat{v}_t = rac{v_t}{\|v_t\|}$$

Error region: ξ_t

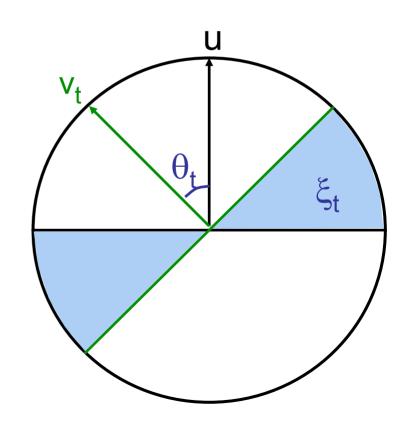
Assumptions:

Separability

u is through origin

x~Uniform on S

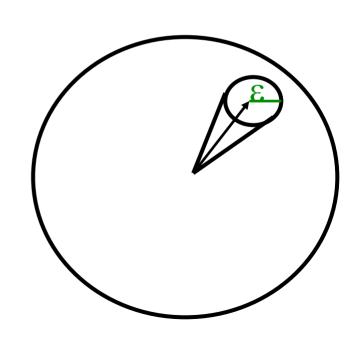
error rate:
$$\epsilon_t = P_{x \in S}[x \in \xi_t] = \frac{\theta_t}{\pi}$$



OPT

Fact: Under this framework, any algorithm requires $\Omega(d \log 1/\epsilon)$ labels to output a hypothesis within generalization error at most ϵ .

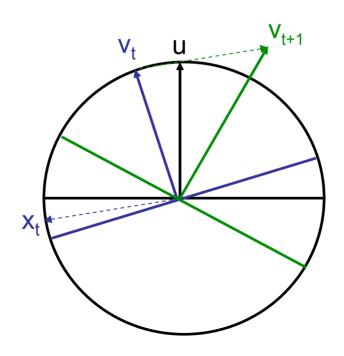
Proof idea: Can pack $(1/\epsilon)^d$ spherical caps of radius ϵ on surface of unit ball in \mathbb{R}^d . The bound is just the number of bits to write the answer.



Perceptron

Perceptron update: $v_{t+1} = v_t + y_t x_t$

→ error does not decrease monotonically.



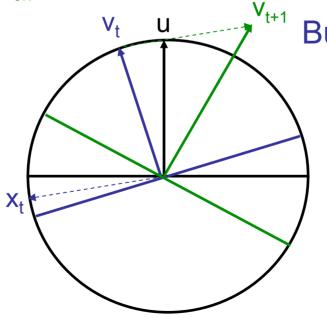
Lower bound on labels for Perceptron

Theorem [DKM05]: The Perceptron algorithm, using any active learning rule, requires $\Omega(1/\epsilon^2)$ labels to reach generalization error ϵ w.r.t. the uniform distribution.

Proof idea: Lemma: For small θ_t , the Perceptron update will increase θ_t unless $||v_t||$

is large: $\Omega(1/\sin \theta_t)$.

So need $t \ge 1/\sin^2\theta_t$.



But, $\|\mathbf{v}_t\|$ growth rate:

Under uniform, $\epsilon_t \propto \theta_t \geq \sin \theta_t$.

A modified Perceptron update

Standard Perceptron update:

$$v_{t+1} = v_t + y_t x_t$$

Instead, weight the update by "confidence" w.r.t. current hypothesis v_t:

$$v_{t+1} = v_t + 2 y_t | v_t \cdot x_t | x_t$$
 $(v_1 = y_0 x_0)$

(similar to update in [Blum et al. '96] for noise-tolerant learning)

Unlike Perceptron:

Error decreases monotonically:

$$cos(\theta_{t+1}) = u \cdot v_{t+1} = u \cdot v_t + 2 |v_t \cdot x_t| |u \cdot x_t|$$

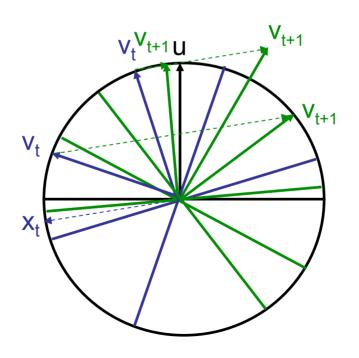
$$\geq u \cdot v_t = cos(\theta_t)$$

$$||v_t|| = 1 \text{ (due to factor of 2)}$$

A modified Perceptron update

Perceptron update: $v_{t+1} = v_t + y_t x_t$

Modified Perceptron update: $v_{t+1} = v_t + 2 y_t | v_t \cdot x_t | x_t$



Mistake bound

Theorem [DKM05]: In the supervised setting, the modified Perceptron converges to generalization error ϵ after $\tilde{O}(d \log 1/\epsilon)$ mistakes.

Proof idea: The exponential convergence follows from a multiplicative decrease in θ_t :

$$1 - \cos \theta_{t+1} \le (1 - \frac{c}{d})(1 - \cos \theta_t)$$

On an update,
$$\cos \theta_{t+1} = u \cdot v_{t+1} = u \cdot v_t + 2y_t |v_t \cdot x_t| (u \cdot x_t)$$

$$= u \cdot v_t + 2|v_t \cdot x_t| |u \cdot x_t|$$

$$= \cos \theta_t + 2|v_t \cdot x_t| |u \cdot x_t|$$

 \rightarrow Lower bound $2|v_t \cdot x_t||u \cdot x_t|$, with high probability, using distributional assumption.

Mistake bound

Theorem 2: In the supervised setting, the modified Perceptron converges to generalization error ϵ after $\tilde{O}(d \log 1/\epsilon)$ mistakes.

Lemma (band): For any fixed a: ||a||=1, $\gamma \leq 1$ and for x~U on S:

$$\frac{\gamma}{4} \leq P_{x \in S} \left[|a \cdot x| \leq \frac{\gamma}{\sqrt{d}} \right] \leq \gamma$$

$$\left\{ x : |a \cdot x| \leq k \right\} = \begin{cases} k \\ \end{cases}$$
 Apply to $|v_t \cdot x|$ and $|u \cdot x| \Rightarrow 2|v_t \cdot x_t||u \cdot x_t|$ is large enough in expectation (using size of ξ_t).

a

Active learning rule

Goal: Filter to label just those points in the error region.

 \rightarrow but θ_t , and thus ξ_t unknown!

Define labeling region:
$$\mathbb{L} = \left\{ x \;\middle|\; |v_t \cdot x| \leq s_t \right\}$$

Tradeoff in choosing threshold s_t:

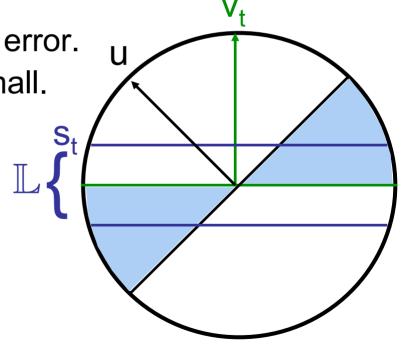
If too high, may wait too long for an error.

If too low, resulting update is too small.

$$\mathbb{L} = \left\{ x \; \left| \; |v_t \cdot x| \leq rac{\sin heta_t}{\sqrt{d}}
ight.
ight.$$
 makes

$$P_{x \in S} [x \in \mathbb{L} \mid x \in \xi_t]$$
 constant.

 \rightarrow But θ_t unknown!



Active learning rule

Choose threshold s_t adaptively:

Start high.

Halve, if no error in R consecutive labels.

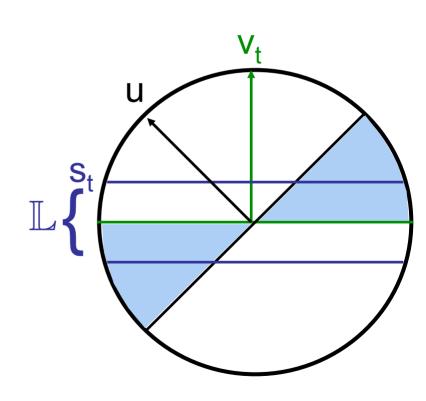
$$\mathbb{L} = \left\{ x \mid |v_t \cdot x| \leq s_t \right\}$$

Start with threshold S_t high:

$$s_1 = \frac{\sin\frac{\pi}{2}}{\sqrt{d}} = \frac{1}{\sqrt{d}}$$

After R consecutive labeled points, if no errors: s_t

$$s_{t+1} = \frac{s_t}{2}$$



Label bound

Theorem [DKM05]: In the active learning setting, the modified Perceptron, using the adaptive filtering rule, will converge to generalization error ϵ after $\tilde{O}(d \log 1/\epsilon)$ labels.

Corollary [DKM05]: The total errors (labeled and unlabeled) will be Õ(d log 1/ε).

Proof technique

Proof outline: We show the following lemmas hold with sufficient probability:

Lemma 1.
$$s_t$$
 does not decrease too quickly: $s_t \geq \frac{\sin \theta_t}{4\sqrt{d}}$

Lemma 2. We query labels on a constant fraction of ξ_t .

Lemma 3. With constant probability the update is *good*.

By algorithm, ~1/R labels are mistakes. $\exists R = \tilde{O}(1)$.

⇒ Can thus bound labels and total errors by mistakes.

[DKM05] in context

samples mistakes labels total errors online?					
PAC complexity [Long'03] [Long'95]	$\tilde{O}(d/\epsilon)$ $\Omega(d/\epsilon)$				
Perceptron [Baum'97]	$\tilde{O}(d/\epsilon^3)$ $\Omega(1/\epsilon^2)$	$\tilde{O}(d/\epsilon^2)$ $\Omega(1/\epsilon^2)$	$\Omega(1/\epsilon^2)$		✓
CAL [BBL'06]	$\tilde{O}((d^2/\epsilon))$ log $1/\epsilon$)	$\tilde{O}(d^2 \log 1/\epsilon)$	$\tilde{O}(d^2 \log 1/\epsilon)$		×
QBC [FSST'97]	Õ(d/ε log 1/ε)	Õ(d log 1/ε)	Õ(d log 1/ε)		×
	$\tilde{O}(d/c \log 1/c)$	$\tilde{O}(d \log 1/c)$	$\tilde{O}(d \log 1/c)$	$\tilde{O}(d \log 1/c)$	

[DKM'05] $\left| O(d/\epsilon \log 1/\epsilon) \right| O(d \log 1/\epsilon) \left| O(d \log 1/\epsilon) \right| O(d \log 1/\epsilon)$

Lower bounds on label complexity

For linear separators in R^1 , need just log $1/\epsilon$ labels.

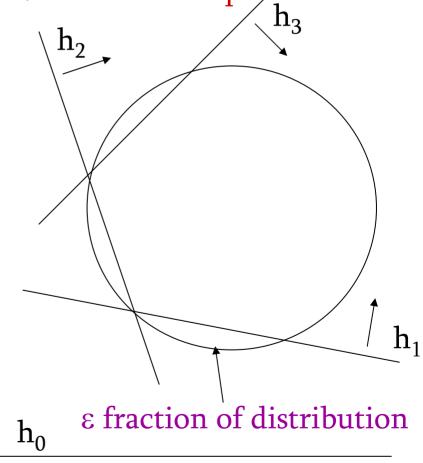
Theorem [D04]: when $H = \{\text{non-homogeneous linear separators in } D^2\}$.

 \mathbb{R}^2 : some target hypotheses require $1/\epsilon$ labels to be queried!

Consider any distribution over the circle in \mathbb{R}^2 .

Need $1/\epsilon$ labels to distinguish between h_0 , h_1 , h_2 , ..., $h_{1/\epsilon}$!

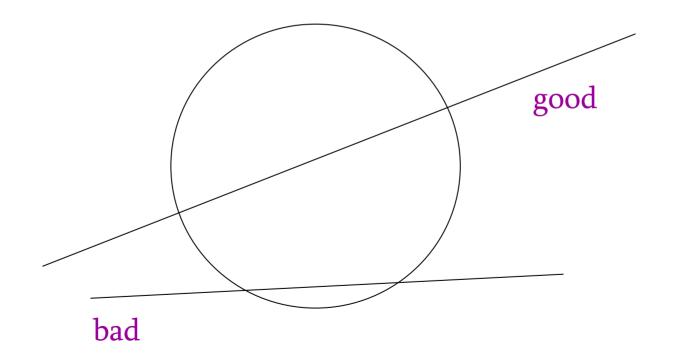
 \rightarrow Leads to analagous bound: $\Omega(1/\epsilon)$ for homogeneous linear separators in R^d .



A fuller picture

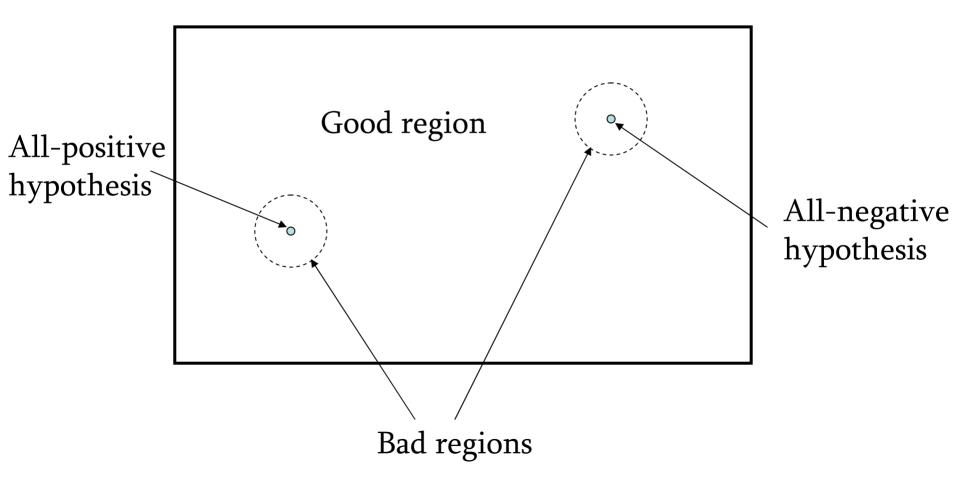
For non-homogenous linear separators in R^2 : some bad target hypotheses which require $1/\epsilon$ labels,

but "most" require just O(log 1/ε) labels...



A view of the hypothesis space

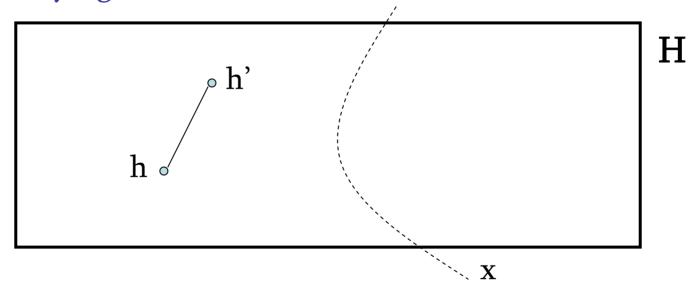
 $\mathbf{H} = \{\text{non-homogeneous linear separators in } \mathbb{R}^2\}$



Geometry of hypothesis space

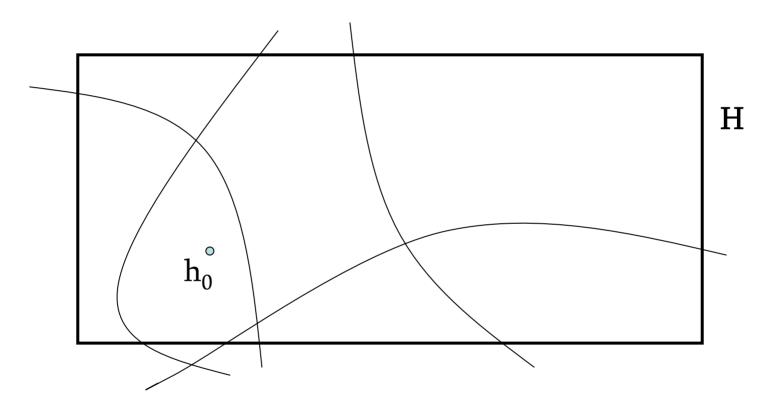
 $H = any hypothesis class, of VC dimension <math>d < \infty$.

P = underlying distribution of data.



- (i) Non-Bayesian setting: no probability measure on H
- (ii) But there is a natural (pseudo) metric: $d(h,h') = P(h(x) \neq h'(x))$
- (iii) Each point x defines a cut through H

Label upper bounding technique [Dasgupta NIPS'05]

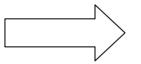


 $(h_0 = target hypothesis)$

Proof technique: analyze how many labels until the diameter of the remaining version space is at most ε .

Searchability index [D05]

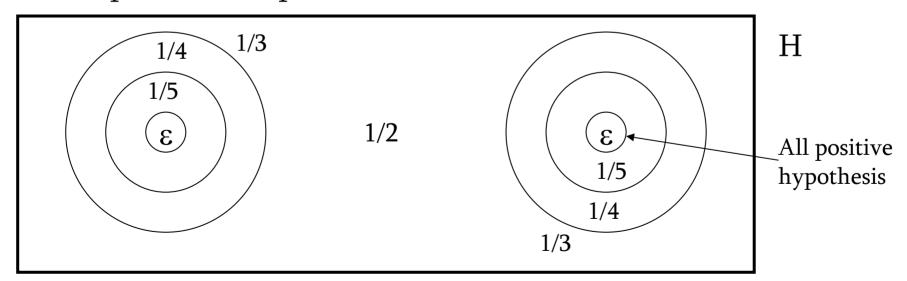
Accuracy ε Data distribution P Amount of unlabeled data



Each hypothesis $h \in H$ has a "searchability index" $\rho(h)$

 $\epsilon \le \rho(h) \le 1$, bigger is better

Example: linear separators in \mathbb{R}^2 , data on a circle:



 $\rho(h) \propto min(pos\ mass\ of\ h),\ neg\ mass\ of\ h),\ but\ never < \epsilon$

Slide credit: S. Dasgupta

Searchability index [D05]

Accuracy ε
Data distribution P
Amount of unlabeled data

Each hypothesis $h \in H$ has a "searchability index" $\rho(h)$

Searchability index lies in the range: $\varepsilon \le \rho(h) \le 1$

Upper bound. For any H of VC-dim $d<\infty$, there is an active learning scheme* which identifies (within accuracy $\leq \varepsilon$) any

 $h \in H$, with a label complexity of at most: $\frac{1}{\rho(h)} \cdot \tilde{O}\left(d \log \frac{1}{\epsilon}\right)$

Lower bound. For any $h \in H$, any active learning scheme for the neighborhood B(h, $\rho(h)$) has a label complexity of at least: $\frac{1}{\rho(h)}$ [When $\rho(h) \gg \epsilon$: active learning helps a lot.]

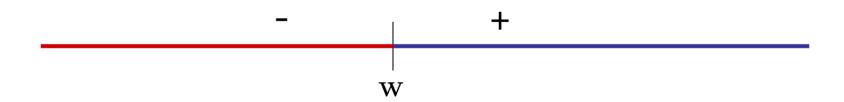
Slide credit: S. Dasgupta

Example: the 1-d line

Searchability index lies in range: $\varepsilon \le \rho(h) \le 1$

Theorem [D05]:
$$\frac{1}{\rho(h)} \le \#$$
 labels needed $\le \frac{1}{\rho(h)} \cdot \tilde{O}\left(d\log\frac{1}{\epsilon}\right)$

Example: Threshold functions on the line



Result: $\rho = 1/2$ for any target hypothesis and any input distribution

Open problem: efficient, general AL

- [M, COLT Open Problem '06]: Efficient algorithms for active learning under general input distributions, *D*.
 - → Current UB's for general distributions are based on intractable schemes!

Provide an algorithm such that w.h.p.:

- 1. After *L* label queries, algorithm's hypothesis *v* obeys:
 - $P_{x \sim D}[v(x) \neq u(x)] < \varepsilon.$
- 2. L is at most the PAC sample complexity, and for a general class of input distributions, L is significantly lower.
- 3. Total running time is at most $poly(d, 1/\epsilon)$.
- Specific variant: homogeneous linear separators, realizable case, D known to learner.

Open problem: efficient, general AL

[M, COLT Open Problem '06]: Efficient algorithms for active learning under general input distributions, *D*.

Other open variants:

Input distribution, *D*, is unknown to learner.

Agnostic case, certain scenarios ([Kääriäinen, NIPS Foundations of Active Learning workshop '05]: negative result for general agnostic setting).

Add the online constraint: memory and time complexity (of the online update) must not scale with number of seen labels or mistakes.

Same goal, other concept classes, or a general concept learner.

Other open problems

Extensions to DKM05:

Relax distributional assumptions.

Uniform is sufficient but not necessary for proof.

Relax realizable assumption.

Analyze margin version

for exponential convergence, without d dependence.

Testing issue: Testing the final hypothesis takes 1/ε labels!

→ Is testing an inherent part of active learning?

Cost-sensitive labels

Bridging theory and practice.

How to benchmark AL algorithms?

Thank you!