
Math Camp 1: Functional analysis




About the primer


Goal To briefly review concepts in functional analysis that

∗will be used throughout the course. The following 

concepts will be described 

1. Function spaces 

2. Metric spaces


3. Dense subsets


4. Linear spaces


5. Linear functionals 

∗The definitions and concepts come primarily from “Introductory Real 
Analysis” by Kolmogorov and Fomin (highly recommended). 



6. Norms and semi-norms of linear spaces


7. Euclidean spaces 

8. Orthogonality and bases 

9. Separable spaces 

10. Complete metric spaces 

11. Hilbert spaces 

12. Riesz representation theorem


13. Convex functions 

14. Lagrange multipliers 



Function space


A function space is a space made of functions. Each 

function in the space can be thought of as a point. Ex­

amples: 

1. C[a, b], the set of all real-valued continuous functions 

in the interval [a, b]; 

2. L1[a, b], the set of all real-valued functions whose ab­

solute value is integrable in the interval [a, b]; 

3. L2[a, b], the set of all real-valued functions square inte­

grable in the interval [a, b] 

Note that the functions in 2 and 3 are not necessarily 

continuous! 



Metric space


By a metric space is meant a pair (X, ρ) consisting of a 

space X and a distance ρ, a single-valued, nonnegative, 

real function ρ(x, y) defined for all x, y ∈ X which has the 

following three properties: 

1. ρ(x, y) = 0 iff x = y; 

2. ρ(x, y) = ρ(y, x); 

3. Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)
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Examples


1. The set of all real numbers with distance


ρ(x, y) = |x − y|


is the metric space IR1.


2. The set of all ordered n-tuples


x = (x1, ..., xn)


of real numbers with distance


� n 

ρ(x, y) = � (xi − yi)
2 

i=1 

is the metric space IRn . 



� 
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� 
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3. The set of all functions satisfying the criteria


f2(x)dx < ∞ 

with distance 

ρ(f1(x), f2(x)) = (f1(x) − f2(x))
2dx 

is the metric space L2(IR). 

4. The set of all probability densities with Kullback-Leibler


divergence 

p1(x)ρ(p1(x), p2(x)) = ln p1(x)dx 
p2(x)

is not a metric space. The divergence is not symmetric 

ρ(p1(x), p2(x)) �= ρ(p2(x), p1(x)). 



Dense


A point x ∈ IR is called a contact point of a set A ∈ IR if 

every ball centered at x contains at least one point of A. 

The set of all contact points of a set A denoted by Ā is 

called the closure of A. 

Let A and B be subspaces of a metric space IR. A is said 

to be dense in B if B ⊂ Ā. In particular A is said to be 

everywhere dense in IR if ¯ = R.A




Examples


1. The set of all rational points is dense in the real line.


2. The set of all polynomials with rational coefficients is 

dense in C[a, b]. 

3. The RKHS induced by the gaussian kernel on [a, b] in 

dense in L2[a, b] 

Note: A hypothesis space that is dense in L2 is a desired 

property of any approximation scheme. 



Linear space


A set L of elements x, y, z, ... is a linear space if the fol­

lowing three axioms are satisfied: 

1. Any two elements x, y ∈ L uniquely determine a third 

element in x + y ∈ L called the sum of x and y such 

that 

(a) x + y = y + x (commutativity) 

(b) (x + y) + z = x + (y + z) (associativity)


(c) An element 0 ∈ L exists for which x + 0 = x for all 

x ∈ L 

(d) For every x ∈ L there exists an element −x ∈ L 

with the property x + (−x) = 0 



2. Any number α and any element x ∈ L uniquely deter­

mine an element αx ∈ L called the product such that 

(a) α(βx) = β(αx)


(b) 1x = x 

3. Addition and multiplication follow two distributive laws 

(a)(α + β)x = αx + βx 

(b)α(x + y) = αx + αy 



Linear functional


A functional, F, is a function that maps another function 

to a real-value 

F : f → IR.


A linear functional defined on a linear space L, satisfies the 

following two properties 

1. Additive: F(f + g) = F(f) + F(g) for all f, g ∈ L


2. Homogeneous: F(αf) = αF(f) 
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Examples


1. Let IRn be a real n-space with elements x = (x1, ..., xn), 

and a = (a1, ..., an) be a fixed element in IRn . Then 

n 

F(x) = aixi 
i=1 

is a linear functional 

2. The integral 

� b 
F[f(x)] = f(x)p(x)dx 

a 

is a linear functional 

3. Evaluation functional: another linear functional is the




Dirac delta function


δt[f(·)] = f(t).


Which can be written

� b 

δt[f(·)] = f(x)δ(x − t)dx. 
a 

4. Evaluation functional: a positive definite kernel in a 

RKHS 

Ft[f(·)] = (Kt, f) = f(t). 

This is simply the reproducing property of the RKHS. 



Normed space


A normed space is a linear (vector) space N in which a 

norm is defined. A nonnegative function � · � is a norm iff 

∀f, g ∈ N and α ∈ IR 

1. �f� ≥ 0 and �f� = 0 iff f = 0;


2. �f + g� ≤ �f� + �g�; 

3. �αf� = |α| �f�. 

Note, if all conditions are satisfied except �f� = 0 iff f = 0 

then the space has a seminorm instead of a norm. 



Measuring distances in a normed space


In a normed space N , the distance ρ between f and g, or 

a metric, can be defined as 

ρ(f, g) = �g − f�.


Note that ∀f, g, h ∈ N 

1. ρ(f, g) = 0 iff f = g. 

2. ρ(f, g) = ρ(g, f). 

3. ρ(f, h) ≤ ρ(f, g) + ρ(g, h).




Example: continuous functions


A norm in C[a, b] can be established by defining 

�f� = max |f(t)|. 
a≤t≤b 

The distance between two functions is then measured as


ρ(f, g) = max |g(t) − f(t)|.

a≤t≤b 

With this metric, C[a, b] is denoted as C. 



Examples (cont.)


A norm in L1[a, b] can be established by defining 

� b 
�f� = |f(t)|dt. 

a 

The distance between two functions is then measured as

� b 

ρ(f, g) = |g(t) − f(t)|dt. 
a 

With this metric, L1[a, b] is denoted as L1. 
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Examples (cont.)


A norm in C2[a, b] and L2[a, b] can be established by defining 

� b 
�1/2 

�f� = f2(t)dt . 
a 

The distance between two functions now becomes


� b 
�1/2 

ρ(f, g) = (g(t) − f(t))2dt . 
a 

With this metric, C2[a, b] and L2[a, b] are denoted as C2 

and L2 respectively. 



� 

Euclidean space


A Euclidean space is a linear (vector) space E in which a 

dot product is defined. A real valued function (·, ·) is a dot 

product iff ∀f, g, h ∈ E and α ∈ IR 

1. (f, g) = (g, f); 

2. (f + g, h) = (f, h∗) + (g, h) and (αf, g) = α(f, g); 

3. (f, f) ≥ 0 and (f, f) = 0 iff f = 0. 

A Euclidean space becomes a normed linear space when 

equipped with the norm 

�f� = (f, f).




Orthogonal systems and bases


A set of nonzero vectors {xα} in a Euclidean space E is 

said to be an orthogonal system if 

(xα, xβ) = 0 for α �= β 

and an orthonormal system if 

(xα, xβ) = 0 for α �= β 

(xα, xβ) = 1 for α = β. 

An orthogonal system {xα} is called an orthogonal basis 

if it is complete (the smallest closed subspace containing 

{xα} is the whole space E). A complete orthonormal sys­

tem is called an orthonormal basis. 
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Examples


1. IRn is a real n-space, the set of n-tuples x = (x1, ..., xn), 

y = (y1, ..., yn). If we define the dot product as 

n 

(x, y) = xiyi 
i=1 

we get Euclidean n-space. The corresponding norms 

and distances in IRn are 

� n 
� 2�x� = xi 

i=1 
� n 

ρ(x, y) = �x − y� = � (xi − yi)
2 . 

i=1 
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The vectors


e1 = (1, 0, 0, ...., 0) 

e2 = (0, 1, 0, ...., 0) 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

en = (0, 0, 0, ...., 1) 

form an orthonormal basis in IRn . 

2. The space l2 with elements x = (x1, x2, ..., xn, ....), y = 

(y1, y2, ..., yn, ....), ..., where 

∞ ∞ 
2 xi < ∞, yi 

2 < ∞, ..., ..., 
i=1 i=1 

becomes an infinite-dimensional Euclidean space when 

equipped with the dot product 

∞ 

(x, y) = xiyi. 
i=1 



The simplest orthonormal basis in l2 consists of vectors


e1 = (1, 0, 0, 0, ...) 

e2 = (0, 1, 0, 0, ...) 

e3 = (0, 0, 1, 0, ...) 

e4 = (0, 0, 0, 1, ...) 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

there are an infinite number of these bases.


3. The space C2[a, b] consisting of all continuous functions 

on [a, b] equipped with the dot product 

� b 
(f, g) = f(t)g(t)dt 

a 

is another example of Euclidean space.




An important example of orthogonal bases in this space 

is the following set of functions 

2πnt 2πnt

1, cos , sin (n = 1, 2, ...).


b − a b − a 



Cauchy-Schwartz inequality


Let H be an Euclidean space. Then ∀f, g ∈ H, it holds 

|(f, g)| ≤ �f� �g� 

Sketch of the proof. The case f ∝ g is trivial, hence let 

us assume the opposite is true. For all x ∈ IR, 

20 < (f + xg, f + xg) = x 2 �g�2 + 2x (f, g) + �f� , 

since the quadratic polynomial of x above has no zeroes, 

the discriminant Δ must be negative 

20 > Δ/4 = (f, g)2 − �f�2 �g� . 



Separable


A metric space is said to be separable if it has a countable 

everywhere dense subset. 

Examples:


1. The spaces IR1, IRn , L2[a, b], and C[a, b] are all separa­

ble. 

2. The set of real numbers is separable since the set of 

rational numbers is a countable subset of the reals and 

the set of rationals is is everywhere dense. 



Completeness


A sequence of functions fn is fundamental if ∀� > 0 ∃N� 

such that 

∀n and m > N�, ρ(fn, fm) < �. 

A metric space is complete if all fundamental sequences 

converge to a point in the space. 

C, L1, and L2 are complete. That C2 is not complete, 

instead, can be seen through a counterexample. 



� 

Incompleteness of C2 

Consider the sequence of functions (n = 1, 2, ...)

⎧ 
⎪ −1 if − 1 ≤ t < −1/n 
⎨ 

φn(t) = nt if − 1/n ≤ t < 1/n 
⎪ 
⎩ 1 if 1/n ≤ t ≤ 1 

and assume that φn converges to a continuous function φ 

in the metric of C2. Let 

−1 if − 1 ≤ t < 0 
f(t) = 

1 if 0 ≤ t ≤ 1 



� 

Incompleteness of C2 (cont.) 

Clearly,

�
� �1/2 �

� �1/2 �� �1/2 

(f(t) − φ(t))2dt ≤ (f(t) − φn(t))
2dt + (φn(t) − φ(t))2dt . 

Now the l.h.s. term is strictly positive, because f(t) is not 

continuous, while for n → ∞ we have 

(f(t) − φn(t))
2dt → 0. 

Therefore, contrary to what assumed, φn cannot converge 

to φ in the metric of C2. 



Completion of a metric space


Given a metric space IR with closure ĪR, a complete metric 
∗ ∗ space IR is called a completion of IR if IR ⊂ IR and 

¯ ∗IR = IR .


Examples


1. The space of real numbers is the completion of the 

space of rational numbers. 

2. L2 is the completion of the functional space C2. 



Hilbert space


A Hilbert space is a Euclidean space that is complete,

separable, and generally infinite-dimensional.


A Hilbert space is a set H of elements f, g, ... for which


1. H is a Euclidean space equipped with a scalar product


2. H is complete with respect to metric ρ(f, g) = �f − g�


3. H is separable (contains a countable everywhere dense 
subset) 

4. (generally) H is infinite-dimensional. 

l2 and L2 are examples of Hilbert spaces. 



Evaluation functionals


A linear evaluation functional is a linear functional Ft that 

evaluates each function in the space at the point t, or 

Ft[f ] = f(t) 

Ft[f + g] = f(t) + g(t). 

The functional is bounded if there exists a M s.t. 

|Ft[f ]| = |f(t)| ≤ M�f�Hil ∀t 

for all f where � · �Hil is the norm in the Hilbert space. 



Evaluation functionals in Hilbert space


The evaluation functional is not bounded in the familiar 

Hilbert space L2([0, 1]), no such M exists and in fact ele­

ments of L2([0, 1]) are not even defined pointwise. 
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Evaluation functionals in Hilbert space


In the following pictures the two functions have the same


norm but they are very different on sets of zero measure
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Riesz Representation Theorem


For every bounded linear functional F on a Hilbert space 

H, there is a unique v ∈ H such that 

F[x] = (x, v)H, ∀x ∈ H 



Convex sets


A set X ∈ IRn is convex if 

∀x1, x2 ∈ X, ∀λ ∈ [0, 1], λx1 + (1 − λ)x2 ∈ X. 

A set is convex if, given any two points in the set, the line 

segment connecting them lies entirely inside the set. 



Convex and Non-convex sets


Convex Sets Non-Convex Sets 



Convex Functions


A function f : IRn → IR is convex if: 

For any x1 and x2 in the domain of f , for any λ ∈ [0, 1], 

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). 

A function is strictly convex if we replace “≤” with “<”.




A Strictly Convex Function
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A Convex Function
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A Non-Convex Function
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Why We Like Convex Functions


Unconstrained convex functions (convex functions where 

the domain is all of IRn) are easy to minimize. Convex 

functions are differentiable almost everywhere. Directional 

derivatives always exist. If we cannot improve our solution 

by moving locally, we are at the optimum. If we cannot 

find a direction that improves our solution, we are at the 

optimum. 



Why We Like Convex Sets


Convex functions over convex sets (a convex domain) are 

also easy to minimize. If the set and the functions are both 

convex, if we cannot find a direction which we are able to 

move in which decreases the function, we are done. Local 

optima are global optima. 



Optimizing a Convex Function Over a

Convex and a Non-Convex Set


f(x,y) = -x + -y 

Global Optima 

Local Optimum 



Existence and uniqueness of minimum


Let f : IRn → IR be a strictly convex function. 

The function f is said to be coercive if 

lim f(x) = +∞. 
�x�→+∞ 

Strictly convex and coercive functions have exactly one 

local (global) minimum. 



�

Local condition on the minimum


If the convex function f is differentiable, its gradient �f is 

null on the minimum x0. 

Even if the gradient does not exist, the subgradient ∂f 

always exists. 

The subgradient of f in x is defined by


∂f(x) = {w ∈ IRn|∀x � ∈ IRn, f(x ) ≥ f(x) + w · (x � − x)}, 

On the minimum x0, it holds 

0 ∈ ∂f(x0), 



Lagrange multiplier’s technique


Lagrange multiplier’s technique allows the reduction of the 

constrained minimization problem 

Minimize I(x)

subject to Φ(x) ≤ m (for some m)


to the unconstrained minimization problem 

Minimize J(x) = I(x) + λΦ(x) (for some λ ≥ 0) 



�

Geometric intuition


The fact that �I does not vanish in the interior of the


domain implies that the constrained minimum x̄
 must lie 

on the domain’s boundary (the level curve Φ(x) = m).


Therefore, at the point x̄
 the component of �I along the


tangent to the curve Φ = m vanishes.


But since the tangent to Φ = m is orthogonal to �Φ, we


have that at the point , �Φ and �I are parallel, or x̄


I( ) ∝ �Φ( ).x̄
 x̄




Geometric intuition (Cont)


We thus introduce a parameter λ ≥ 0, called Lagrange 

multiplier, and consider the problem of finding the uncon­

strained minimum xλ of 

J(x) = I(x) + λΦ(x) 

as a function of λ. 

By setting �J = 0, we actually look for the points where 

�I and �Φ are parallel. The idea is to find all such points 

and then check which of them lie on the curve Φ = m. 


