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σ-algebra


A σ-algebra Σ over a set Ω is a collection of subsets of Ω 

that is closed under countable set operations: 

1.	 ∅ ∈ Σ. 

2.	 E ∈ Σ then so is the complement of E.


3. If	 F is any countable collection of sets in Σ, then the 

union of all the sets E in F is also in Σ. 



� 

Measure


A measure µ is a function defined on a σ-algebra Σ over a 

set Ω with values in [0, ∞] such that 

1. The empty set has measure zero: µ(∅) = 0


2. Countable additivity:	 if E1, E2, E3, ... is a countable 

sequence of pairwise disjoint sets in Σ, 

µ


⎛
⎝

∞

 

Ei 

⎞
⎠


∞
= µ(Ei) 

i=1 i=1 

The triple (Ω, Σ, µ) is called a measure space. 



Lebesgue measure


The Lebesgue measure λ is the unique complete translation-

invariant measure on a σ-algebra containing the intervals 

in IR such that λ([0, 1]) = 1. 



� 

Probability measure


Probability measure is a positive measure µ on the mea­


surable space (Ω, Σ) such that µ(Ω) = 1.


(Ω, Σ, µ) is called a probability space.


A random variable is a measurable function X : Ω �→ IR.


We can now define probability of an event


P (event A) = µ 
�
{x : IA(x) = 1} . 



� 

Expectation and variance


Given a random variable X ∼ µ the expectation is


IEX ≡ Xdµ. 

Similarly the variance of the random variable σ2(X) is 

var(X) ≡ IE(X − IEX)2 . 



Convergence


Recall that a sequence xn converges to the limit x 

xn x → 

if for any � > 0 there exists an N such that xn − x < � for | |
n > N .


We say that the sequence of random variables Xn con­

verges to X in probability 

P
Xn − X → 

if 

P ( Xn − X 0≥ ε) →| | 
for every � > 0. 



Convergence in probability and almost

surely


Any event with probability 1 is said to happen almost 

surely. A sequence of real random variables Xn converges 

almost surely to a random variable X iff 

P 
� 

lim Xn = X
� 
= 1. 

n→∞ 

Convergence almost surely implies convergence in proba­

bility. 



Law of Large Numbers. Central Limit

Theorem


Weak LLN: if X1, X2, X3, ... is an infinite sequence of i.i.d. 

random variables with finite variance σ2, then 

X1 + + Xn P
Xn = 

· · · − IEX1 
n 

→ 

In other words, for any positive number �, we have 

lim P 
����Xn − IEX1

��� ≥ ε
� 
= 0. 

n→∞ 

CLT: �
Xn − µ 

� 

lim Pr 
σ/
√

n 
≤ z = Φ(z) 

n→∞ 

where Φ is the cdf of N(0, 1). 



Useful Probability Inequalities


Jensen’s inequality: if φ is a convex function, then 

φ(IE(X)) ≤ IE(φ(X)). 

For X ≥ 0, 

IE(X) = 
� ∞ 

Pr(X ≥ t)dt. 
0 

Markov’s inequality: if X ≥ 0, then 

IE(X)
Pr(X ≥ t) ≤ ,


t 
where t ≥ 0. 



Useful Probability Inequalities


Chebyshev’s inequality (second moment): if X is arbitrary 

random variable and t > 0, 

var(X)

Pr( X − IE(X) .| | ≥ t) ≤ 

t2 

Cauchy-Schwarz inequality: if IE(X2) and IE(Y 2) are finite, 

then 

|IE(XY )
�

IE(X2)IE(Y 2).| ≤ 



Useful Probability Inequalities


If X is a sum of independent variables, then X is better 

approximated by IE(X) than predicted by Chebyshev’s in­

equality. In fact, it’s exponentially close! 

Hoeffding’s inequality:


Let X1, ..., Xn be independent bounded random variables, 

ai ≤ Xi ≤ bi for any i ∈ 1...n. Let Sn = 
�n then for i=1 Xi, 

any t > 0, 
� −2t2 

� 

Pr( Sn − IE(Sn) ≥ t) ≤ 2exp �
i
n 
=1(bi − ai)2

| | 



Remark about sup 

Note that the statement 

1
 n�

with prob. at least 1 − δ , ∀f ∈ F , IEf −| f (zi) ≤ �|

n i=1 

is different from the statement 

1 n�

∀f ∈ F ,
 with prob. at least 1 − δ , IEf −| f (zi)| ≤ �. 

n i=1 

The second statement is an instance of CLT, while the first 

statement is more complicated to prove and only holds for 

some certain function classes. 



Playing with Expectations


Fix a function f , loss V , and dataset S = {z1, ..., zn}. The 
1empirical loss of f on this data is IS[f ] = n 

�n
i=1 V (f, zi). 

The expected error of f is I[f ] = IEzV (f, z). What is the 

expected empirical error with respect to a draw of a set S 

of size n? 

1 n

IESIS[f ] = 
� 

IESV (f, zi) = IESV (f, z1) 
n i=1 


