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o-algebra

A o-algebra > over a set 2 is a collection of subsets of 2
that is closed under countable set operations:

1. 0 e X,

2. E € > then so is the complement of FE.

3. If F'is any countable collection of sets in >, then the
union of all the sets E in F' is also in 2.



Measure

A measure p is a function defined on a o-algebra > over a
set 2 with values in [0, o] such that

1. The empty set has measure zero: u() =0

2. Countable additivity: if Eq, Eo, E3, ... is a countable
sequence of pairwise disjoint sets in >,

v ( g Ez) = > u(E;)
i=1 =1

1=

The triple (2,3, ) is called a measure space.



Lebesgue measure

The Lebesgue measure X is the unique complete translation-
invariant measure on a o-algebra containing the intervals
in R such that A([0,1]) = 1.



Probability measure

Probability measure is a positive measure p on the mea-
surable space (€2,3) such that u(2) = 1.

(2,X, ) is called a probability space.
A random variable is a measurable function X : Q2 — IR.

We can now define probability of an event

P(event A) = pu <{x p(r) = 1}) :



Expectation and variance
Given a random variable X ~ u the expectation is

EX = / Xdu.

Similarly the variance of the random variable ¢2(X) is

var(X) = E(X — EX)?.



Convergence

Recall that a sequence x,, converges to the limit «

In — I

if for any € > 0 there exists an N such that |z, — x| < € for
n > N.

We say that the sequence of random variables X, con-
verges to X in probability

Xn——>X

P(|Xn—X|>¢)—0

for every € > 0.



Convergence in probability and almost
surely

Any event with probability 1 is said to happen almost
surely. A sequence of real random variables X,, converges
almost surely to a random variable X iff

P( lim anx) = 1.

n—oeo

Convergence almost surely implies convergence in proba-
bility.



Law of Large Numbers. Central Limit
T heorem

Weak LLN: if X1, X>, X3,... is an infinite sequence of i.i.d.
random variables with finite variance o2, then

. X444+ X
X, = 1+ + Xn P EX;

mn
In other words, for any positive number €, we have

lim P (\Yn —]EXl‘ > s) — 0.

n—oo

CLT:

1im_Pr (707;\;; < z> — d(2)

where @ is the cdf of N(0,1).



Useful Probability Inequalities

Jensen’s inequality: if ¢ is a convex function, then

P(E(X)) <E(e(X)).

For X > 0O,

E(X) = /OOO Pr(X > t)dt.

Markov's inequality: if X > 0, then
E(X)

Y

Pr(X >1t) <

where t > 0.



Useful Probability Inequalities

Chebyshev’s inequality (second moment): if X is arbitrary
random variable and ¢t > O,

var(X).

Pr(IX —E(X)| 2 ) < *5

Cauchy-Schwarz inequality: if E(X?) and E(Y?) are finite,
then

E(XY)| < VE(XD)EY?).



Useful Probability Inequalities

If X is a sum of independent variables, then X is better
approximated by IE(X) than predicted by Chebyshev’'s in-
equality. In fact, it's exponentially closel

Hoeffding’'s inequality:
Let Xq,..., X, be independent bounded random variables,

a; < X; <b; forany 1 € 1..n. Let S, = Z?—l X;, then for
any t > 0,

Pr(|Sh — E(Sh)| > t) < 2ex ( 247 )
" nol= = e > (b — a)?



Remark about sup

Note that the statement

1 n
with prob. atleast 1 -6 ,VfeF, [Ef—=) f(z)|<e
=1

is different from the statement

1 n
Vf € F, with prob. atleast 1 -4, |Ef — = ) f(z;)| <e
ni=1

The second statement is an instance of CLT, while the first
statement is more complicated to prove and only holds for
some certain function classes.



Playing with Expectations

Fix a function f, loss V, and dataset S = {z1,...,zn}. The
empirical loss of f on this data is Ig[f] = %Zf‘zl V(f,z).
The expected error of f is I[f] = E.V(f,z). What is the
expected empirical error with respect to a draw of a set S

of size n?

Eslslf] == . EsV(f,5) = EsV(f,21)

1=1



