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• Problems with neural networks
• Support Vector Machines
• Controlling complexity in statistical models



Questions about neural networks

• Why do they have such a bad rap?
• To what extent are neural networks brain-

like?
• They take a long time to train.  Is that a 

good thing or a bad thing from the 
standpoint of cognitive modeling?



Models versus Data
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Number game
• Neural networks 

– Delta rule learning
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• Similarity to exemplars
– Average similarity:

Alternative models
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Questions about neural networks

• Why do they have such a bad rap?
• To what extent are neural networks brain-

like?
• They take a long time to train.  Is that a 

good thing or a bad thing from the 
standpoint of cognitive modeling?
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Support Vector Machines 
(SVMs)

• Problems with neural networks
– Flexible nonparametric classifiers, but slow to 

train and no good generalization guarantees
• Problems with perceptrons

– Good generalization guarantees and fast 
training, but only for a limited parametric 
family of problems (linearly separable classes). 

• SVMs seek the best of both worlds. 



The virtue of high-dimensional 
feature spaces
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The virtue of high-dimensional 
feature spaces
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The SVM approach
• Embed data in d-dimensional feature space 

(d >> # data points, maybe infinite). 
• Find optimal separating hyperplane in 

feature space. 
• What makes this possible:

– For d large enough, all categorization problems 
become linearly separable.   



The SVM approach
• Embed data in d-dimensional feature space 

(d >> # data points, maybe infinite). 
• Find optimal separating hyperplane in 

feature space. 
• What makes this possible:

– Computations depend only inner products 
between feature vectors, which can be 
expressed as a simple kernel on inputs, e.g.:  
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The SVM approach
• Embed data in d-dimensional feature space 

(d >> # data points, maybe infinite). 
• Find optimal separating hyperplane in 

feature space. 
• What makes this possible:

– A wide range of simple kernels define very 
high-dimensional (and useful) feature spaces:  
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The original Perceptron idea
• Embed data in d-dimensional feature space 

(d >> # data points, maybe infinite). 
• Find optimal separating hyperplane in 

feature space. 
• Problems:

– Didn’t know the “kernel trick”, but inspired by 
neural receptive fields. (c.f. Minsky & Papert)

– Didn’t have a good concept of “optimal 
separating hyperplane”.  In high-dimensional 
feature spaces, infinitely many errorless planes.



Maximum margin hyperplane

• Depends only on the 
“support vectors”: 
points closest to the 
boundary between 
classes. 

• PAC-style guarantees 
of good generalization:    
log |H| ~ # of support         

vectors
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SVMs and neural networks
• SVMs have many of the attractive features 

of neural networks, but not all. 
– No sharing of weights 

(parameters) 
across many
related 
learning 
tasks.  
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SVMs and neural networks
• SVMs also preserve some of the limitations 

of neural networks. 
– No learning from just one or a few positive 

examples.
– No natural way to build in prior knowledge 

about categories. 
– No explicit representation of learned concepts 

or abstractions. 



Evaluating models for concept 
learning

• Dimensions:
– Causal versus Referential inference
– Parametric versus Non-parametric
– Generative versus Discriminative

• Which of these approaches are most suited 
for understanding human learning?



• Dimensions:
– Causal versus Referential inference
– Parametric versus Non-parametric
– Generative versus Discriminative

• Issues:
– All-or-none versus graded generalization
– Learning from very few labeled examples
– Incorporating unlabeled examples
– Incorporating prior knowledge
– Forming abstractions and theories
– Learning “new” concepts
– Trading off complexity with fit to data
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Overfitting in neural networks
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Overfitting is a universal problem
• Concept learning as search: subset principle
• Bayesian concept learning: size principle
• Categorization with generative models

• Categorization with discriminative models
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How to control model complexity? 

• Traditional “model 
control parameters”
– Early stopping
– Weight decay
– Slow learning rate
– Bottleneck number 

of hidden units
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How to choose control parameters?

• Cross-validation
– Separate data into 

“training set” and 
“validation set” 
(simulated test data)

– Learn on training set 
until validation error 
stops decreasing.
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Cross-validation

• Advantages:
– Intuitive
– Works in practice

• Disadvantages
– Theoretical justification unclear.
– Unclear how to choose training/validation split.
– Doesn’t use all of the data.
– Difficult to apply to many control parameters.



Monte Carlo Cross-validation
• Consider many different random 

training/test splits. 
– Smythe: Application to choosing the correct 

number of components in a mixture model. 

• Disadvantages
– Theoretical justification unclear.
– Unclear how to choose training/validation split.
– Doesn’t use all of the data.
– Difficult to apply to many control parameters.
– Slow. 
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