
Outline

• Bayesian parameter estimation
• Hierarchical Bayesian models
• Metropolis-Hastings

– A more general approach to MCMC



Coin flipping

• Comparing two simple hypotheses
– P(H) = 0.5 vs. P(H) = 1.0

• Comparing simple and complex hypotheses
– P(H) = 0.5 vs. P(H) = θ

• Comparing infinitely many hypotheses
– P(H) = θ :  Infer θ



Comparing infinitely many hypotheses

• Assume data are generated from a model:

• What is the value of θ ?
– each value of θ is a hypothesis H
– requires inference over infinitely many hypotheses

d1 d2 d3 d4

θ

P(H) = θ



Comparing infinitely many hypotheses
• Flip a coin 10 times and see 5 heads, 5 tails. 
• P(H) on next flip? 50%
• Why?  50% = 5 / (5+5) = 5/10.
• “Future will be like the past.”

• Suppose we had seen 4 heads and 6 tails.
• P(H) on next flip? Closer to 50% than to 40%.
• Why? Prior knowledge.



Integrating prior knowledge and data

)(
)|()()|(

DP
HDPHPDHP =

P(θ | D) ∝ P(D | θ ) P(θ )

• Posterior distribution P(p | D) is a probability 
density over θ = P(H)

• Need to work out likelihood P(D | θ ) and 
specify prior distribution P(θ )



Likelihood and prior

• Likelihood:
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
P(θ ) ∝ pFH-1 (1-p)FT-1?



A simple method of specifying priors

• Imagine some fictitious trials, reflecting a 
set of previous experiences
– strategy often used with neural networks or 

building invariance into stat. machine vision.
• e.g., F ={1000 heads, 1000 tails} ~ strong 

expectation that any new coin will be fair

• In fact, this is a sensible statistical idea...



Likelihood and prior

• Likelihood:
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
P(θ ) ∝ θ FH-1 (1-θ ) FT-1

– FH: fictitious observations of heads
– FT: fictitious observations of tails

Beta(FH,FT)



Likelihood and prior

• Likelihood:
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
P(θ ) = θ FH-1 (1-θ ) FT-1

– FH: fictitious observations of heads
– FT: fictitious observations of tails

Γ(FH+FT)
Γ(FH) Γ(FT)



Likelihood and prior

• Likelihood:
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
Γ(FH+FT)

Γ(FH) Γ(FT)∫
1

0∫
1

0
P(θ ) dθ = θ FH-1 (1-θ ) FT-1dθ = 1

A very useful integral



Likelihood and prior

• Likelihood:
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
Γ(FH+FT)

Γ(FH) Γ(FT)∫
1

0∫
1

0
P(θ ) dθ = θ FH-1 (1-θ ) FT-1dθ = 1

Also useful: Γ(x) = (x-1)!
Γ(x+1) = x Γ(x)



Shape of the Beta prior 
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Shape of the Beta prior 

Figure by MIT OCW.
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Bayesian parameter learning
• Likelihood: Bernoulli(θ )

P(D | θ ) =  θ NH (1-θ ) NT
– NH, NT: number of heads, tails observed

• Prior: Beta(FH,FT)
P(θ ) ∝ θ FH-1 (1-θ ) FT-1

– FH, FT: fictitious observations of heads, tails
• Posterior: Beta(NH+FH, NT+FT)

P(θ | D) ∝ θ NH+FH-1 (1-θ ) NT+FT-1

= θ NH+FH-1 (1-θ ) NT+FT-1Γ(NH+FH+NT+FT)
Γ(NH+FH) Γ(NT+FT)



Bayesian parameter learning

d1 d2 d3 d4

θ

D = NH,NT

• Likelihood: Bernoulli(θ )
P(D | θ ) =  θ NH (1-θ ) NT

– NH, NT: number of heads, tails observed



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

D = NH,NT

• Prior: Beta(FH,FT)
P(θ | FH, FT) ∝ θ FH-1 (1-θ ) FT-1

– FH, FT: fictitious observations of heads, tails



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

D = NH,NT

• Posterior: Beta(NH+FH, NT+FT)
P(θ | D, FH, FT) ∝ θ NH+FH-1 (1-θ ) NT+FT-1

= θ NH+FH-1 (1-θ ) NT+FT-1Γ(NH+FH+NT+FT)
Γ(NH+FH) Γ(NT+FT)



Conjugate priors
• A prior p(θ ) is conjugate to a likelihood 

function p(D | θ ) if the posterior has the same 
functional form of the prior.
– Different parameter values in the prior and 

posterior reflect the impact of observed data.
– Parameter values in the prior can be thought of as a 

summary of “fictitious observations”. 

• Exist for many standard distributions
– all exponential family models
– e.g., Beta is conjugate to Bernoulli (coin-flipping)



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:
P(H|D=NH, NT; FH, FT) = ?



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

∫
1

0
P(H|D, FH, FT) = P(H|θ ) P(θ | D, FH, FT) dθ



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

∫
1

0
P(H|D, FH, FT) = θ P(θ | D, FH, FT) dθ



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

∫
1

0

P(H|D, FH, FT) =

θ                               θ NH+FH-1 (1-θ ) NT+FT-1 dθΓ(NH+FH+NT+FT)
Γ(NH+FH) Γ(NT+FT)



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

∫
1

0

P(H|D, FH, FT) =

θ θ NH+FH-1 (1-θ ) NT+FT-1 dθΓ(NH+FH+NT+FT)
Γ(NH+FH) Γ(NT+FT)



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

∫
1

0

P(H|D, FH, FT) =

θ NH+FH (1-θ ) NT+FT-1 dθΓ(NH+FH+NT+FT)
Γ(NH+FH) Γ(NT+FT)



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

P(H|D, FH, FT) =
Γ(NH+FH+NT+FT)

Γ(NH+FH) Γ(NT+FT) Γ(NH+FH+NT+FT+1)
Γ(NH+FH+1) Γ(NT+FT)x

Γ(x+1) = x Γ(x)



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

P(H|D, FH, FT) =
Γ(NH+FH+NT+FT)

Γ(NH+FH) Γ(NT+FT) (NH+FH+NT+FT) Γ(NH+FH+NT+FT)
(NH+FH) Γ(NH+FH) Γ(NT+FT)x



Bayesian parameter learning

d1 d2 d3 d4

θ

FH,FT

H
D = NH,NT

• Posterior predictive distribution:

P(H|D, FH, FT) =
(NH+FH+NT+FT)

(NH+FH)



Some examples
• e.g., F ={1000 heads, 1000 tails} ~ strong 

expectation that any new coin will be fair
• After seeing 4 heads, 6 tails, P(H) on next 

flip = 1004 / (1004+1006) = 49.95%
• e.g., F ={3 heads, 3 tails} ~ weak 

expectation that any new coin will be fair
• After seeing 4 heads, 6 tails, P(H) on next 

flip = 7 / (7+9) = 43.75%  
Prior knowledge too weak



But… flipping thumbtacks

• e.g., F ={4 heads, 3 tails} ~ weak expectation 
that tacks are slightly biased towards heads

• After seeing 2 heads, 0 tails, P(H) on next flip 
= 6 / (6+3) = 67%

• Some prior knowledge is always necessary to 
avoid jumping to hasty conclusions... 

• Suppose F = { }: After seeing 2 heads, 0 tails, 
P(H) on next flip = 2 / (2+0) = 100%



Origin of prior knowledge

• Tempting answer: prior experience
• Suppose you have previously seen 2000 

coin flips: 1000 heads, 1000 tails

• By assuming all coins (and flips) are alike, 
these observations of other coins are as 
good as observations of the present coin
– e.g., 200 coins flipped 10 times each.



Hierarchical priors

d1 d2 d3 d4

FH,FT

d1 d2 d3 d4

θ1

d1 d2 d3 d4

θ ~ Beta(FH,FT)

Coin 1 Coin 2 Coin 200...θ2 θ200

• Latent structure captures what is common to all 
coins, and also their individual variability



Problems with simple empiricism

• Haven’t really seen 2000 coin flips, or any flips of a 
thumbtack
– Prior knowledge is stronger than raw experience justifies

• Haven’t seen exactly equal number of heads and tails
– Prior knowledge is smoother than raw experience justifies

• Should be a difference between observing 2000 flips 
of a single coin versus observing 10 flips each for 200 
coins, or 1 flip each for 2000 coins
– Prior knowledge is more structured than raw experience



A simple theory
• “Coins are manufactured by a standardized 

procedure that is effective but not perfect.” 
– Justifies generalizing from previous coins to the 

present coin.
– Justifies smoother and stronger prior than raw 

experience alone. 
– Explains why seeing 10 flips each for 200 coins is 

more valuable than seeing 2000 flips of one coin.
• “Tacks are asymmetric, and manufactured to 

less exacting standards.” 



Hierarchical priors

FH,FT

physical knowledge

d1 d2 d3 d4

θ1 θ200
...

FH,FT

d1 d2 d3 d4

θ1
Coin 1 Tack 1 θ200

...

Coins Thumbtacks

• Qualitative beliefs (e.g. symmetry) can influence 
estimation of continuous properties (e.g. FH, FT)



Hierarchical priors

FH,FT

physical knowledge

d1 d2 d3 d4

θ1 θ200
...

FH,FT

d1 d2 d3 d4

θ1
Coin 1 Tack 1 θ200

...

Coins Thumbtacks

• Explains why 10 flips of 200 coin are better than 2000 
flips of a single coin: more informative about FH, FT, 
assuming parameters not too large for new kind of coin. 



Stability versus Flexibility
• Can all domain knowledge be represented 

with conjugate priors?
• Suppose you flip a coin 25 times and get all 

heads.  Something funny is going on …
• But with F ={1000 heads, 1000 tails}, 

P(heads) on next flip = 1025 / (1025+1000) 
= 50.6%.   Looks like nothing unusual.

• How do we balance stability and flexibility?
– Stability: 6 heads, 4 tails          θ ~ 0.5
– Flexibility: 25 heads, 0 tails θ ~ 1



Hierarchical priors
• Higher-order hypothesis: is this

coin fair or unfair?
• Example probabilities:

– P(fair) = 0.99
– P(θ |fair) is Beta(1000,1000)
– P(θ |unfair) is Beta(1,1)

• 25 heads in a row propagates up, 
affecting θ and then P(fair|D) d1 d2 d3 d4

θ

FH,FT

fair/unfair?

P(fair|25 heads)        P(25 heads|fair)      P(fair) 
P(unfair|25 heads)     P(25 heads|unfair)  P(unfair) = =  9 x 10-5

θθθ dpDPDP )fair|()|()fair|(
1

0∫=



Hierarchical priors

• Higher-order hypothesis: is this
coin fair or unfair?

• Example probabilities:
– P(fair) = 0.99
– P(θ |fair) is Beta(1000,1000)
– P(θ |unfair) is Beta(1,1)

• 25 heads in a row propagates up, 
affecting θ and then P(fair|D)

d1 d2 d3 d4

θ

FH,FT

social knowledgePhysical  knowledge

fair/unfair?

P(fair|25 heads)        P(25 heads|fair)      P(fair) 
P(unfair|25 heads)     P(25 heads|unfair)  P(unfair) = =  9 x 10-5



Summary
• Learning the parameters of a generative 

model as Bayesian inference. 
• Conjugate priors

– an elegant way to represent simple kinds of prior 
knowledge. 

• Hierarchical Bayesian models
– integrate knowledge across instances of a system, 

or different systems within a domain.
– can incorporate abstract theoretical knowledge.
– inference may get difficult….



Other questions
• Learning isn’t just about parameter 

estimation
– How do we learn the functional form of a 

variable’s distribution? 
– How do we learn model structure?  Theories?

• Can we “grow” levels of abstraction?
• How do hierarchical Bayesian models 

address the Grue problem?   Do we care? 
• The “topics” model for semantics as an 

example of applying hierarchical Bayesian 
modeling to cognition.  Probably next time.



Topic models of semantic structure: e.g., Latent 
Dirichlet Allocation (Blei, Ng, Jordan)
– Each document in a corpus is associated with a 

distribution θ over topics.
– Each topic t is associated with a distribution φ(t) 

over words.

Blei, David, Andrew Ng, and Michael Jordan. "Latent Dirichlet Allocation." 
Journal of Machine Learning Research 3 (Jan 2003): 993-1022.

Image removed due to copyright considerations.  Please see:



A selection of topics (TASA)
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A selection of topics (TASA)
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Joint models of syntax and semantics 
(Griffiths, Steyvers, Blei & Tenenbaum, NIPS 2004)

• Embed topics model inside an nth order 
Hidden Markov Model:

Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum.Integrating Topics 
and Syntax. Advances in Neural Information Processing Systems 17 (2005).

Image removed due to copyright considerations. Please see:



Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum.Integrating Topics 
and Syntax. Advances in Neural Information Processing Systems 17 (2005).
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Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum.Integrating Topics  
and Syntax. Advances in Neural Information Processing Systems 17 (2005).
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Corpus-specific factorization
(NIPS)

Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum.Integrating Topics 
and Syntax. Advances in Neural Information Processing Systems 17 (2005).
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Syntactic classes in PNAS
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Semantic highlighting
Darker words are more likely to have been generated from the
topic-based “semantics” module:



Outline

• Bayesian parameter estimation
• Hierarchical Bayesian models
• Metropolis-Hastings

– A more general approach to MCMC



Motivation

• Want to compute P(h|evidence):  

• General problem with complex models: sum 
over alternative hypotheses is intractable. 

∑
′

′′
=

h
hPhevidenceP

hPhevidencePevidencehP
)()|(

)()|()|(



Markov chain Monte Carlo

• Sample from a Markov chain which 
converges to posterior distribution

• After an initial “burn in” period, 
samples are independent of starting 
conditions. 

Image removed due to 
copyright considerations.



What’s a Markov chain?

x x x x x x x x

Transition matrix
P(x(t+1)|x(t)) = T(x(t),x(t+1)) 

• States of chain are variables of interest
• Transition matrix chosen to give posterior 

distribution as stationary distribution



Gibbs sampling

• Suppose (1) we can factor hypotheses into 
individual state variables, h = <h1, h2, …, hn>;

• and (2) we can easily compute 
P(hi|h-i, evidence), where 

h-i = h1
(t+1), h2

(t+1),…, hi-1
(t+1)

, hi+1
(t)

, …, hn
(t)

• Then use Gibbs sampling:
– Cycle through variables h1, h2, …, hn

– Draw hi
(t+1) from P(hi|h-i, evidence)



Gibbs sampling

Image removed due to copyright considerations.

(MacKay, 2002)



Motivation for Metropolis-Hastings

• Want to compute P(h|evidence):  

• We have a probabilistic model that allows 
us to compute P(evidence|h) and P(h).

• We can compute relative posteriors:
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Metropolis-Hastings algorithm

• Transitions have two parts:
– proposal distribution: Q(h(t+1)| h(t))

– acceptance: take proposals with probability

A(h(t+1)| h(t)) = min{ 1,                                            }P(h(t+1)|evidence) Q(h(t)| h(t +1))
P(h(t)|evidence) Q(h(t+1)| h(t))



Metropolis-Hastings algorithm

Complex unknown posterior distribution

Figure by MIT OCW.

Complex Unknown Posterior Distribution



Metropolis-Hastings algorithm
Complex unknown posterior distribution

e.g., Gaussian proposal distribution

Complex Unknown Posterior Distribution

Figure by MIT OCW.



Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
Complex unknown posterior distribution

e.g., Gaussian proposal distribution

Figure by MIT OCW.

Complex Unknown Posterior Distribution

A (h(t+1)  h(t)) = 0.5



Metropolis-Hastings algorithm
Complex unknown posterior distribution

e.g., Gaussian proposal distribution

Complex Unknown Posterior Distribution

Figure by MIT OCW.



Metropolis-Hastings algorithm
Complex unknown posterior distribution

e.g., Gaussian proposal distribution

Complex Unknown Posterior Distribution

A (h(t+1)  h(t)) = 1

Figure by MIT OCW.



Advanced topics

• What makes a good proposal distribution? 
– “Goldilocks principle”
– May be data-dependent 

• Connections to simulated annealing 
– Integration versus optimization
– MCMC at different temperatures

• MCMC over model structures
– Reversible jump MCMC



Relation to simulated annealing
Complex unknown cost function

Complex Unknown Cost Function

Figure by MIT OCW.



Why MCMC is important 

• Simple
• Can be used with just about any kind of 

probabilistic model, including complex 
hierarchical structures

• Always works pretty well, if you’re willing 
to wait a long time

(cf. Backpropagation for neural networks.)



A model for cognitive 
development?

• Some features of cognitive development:
– Small, random, dumb, local steps 
– Takes a long time
– Can get stuck in plateaus or stages
– “Two steps forward, one step back”
– Over time, intuitive theories get consistently 

better (more veridical, more powerful, broader 
scope). 

– Everyone reaches basically the same state 
(though some take longer than others).
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