
Problem sets

• Late policy  (5% off per day, but the 
weekend counts as only one day).  E.g.,
– Friday: -5%
– Monday: -15%
– Tuesday: -20%
– Thursday: -30%



Outline

• Final thoughts on hierarchical Bayesian 
models and MCMC

• Bayesian classification
• Bayesian concept learning



MCMC methods
• Gibbs sampling

– Factorize hypotheses h = <h1, h2, …, hn>
– Cycle through variables h1, h2, …, hn

– Draw hi
(t+1) from P(hi|h-i, evidence)

• Metropolis-Hastings
– Propose changes to hypothesis from some 

distribution Q(h(t+1)| h(t))
– Accept proposals with probability 

A(h(t+1)| h(t)) = min{ 1,                                            }P(h(t+1)|evidence) Q(h(t)| h(t +1))
P(h(t)|evidence) Q(h(t+1)| h(t))



Why MCMC is important 

• Simple
• Can be used with just about any kind of 

probabilistic model, including complex 
hierarchical structures

• Always works pretty well, if you’re willing 
to wait a long time

(cf. Back-propagation for neural networks.)



A model for cognitive 
development?

• Some features of cognitive development:
– Small, random, dumb, local steps 
– Takes a long time
– Can get stuck in plateaus or stages
– “Two steps forward, one step back”
– Over time, intuitive theories get consistently 

better (more veridical, more powerful, broader 
scope). 

– Everyone reaches basically the same state 
(though some take longer than others).



Topic models of semantic structure: e.g., Latent 
Dirichlet Allocation (Blei, Ng, Jordan)
– Each document in a corpus is associated with a 

distribution θ over topics.
– Each topic t is associated with a distribution φ(t) 

over words.

Blei, David, Andrew Ng, and Michael Jordan. "Latent Dirichlet Allocation." 
Journal of Machine Learning Research 3 (Jan 2003): 993-1022.

Image removed due to copyright considerations. Please see:



Choose mixture weights for each document, generate “bag of words”

θ = {P(z = 1), P(z = 2)}

{0, 1}

{0.25, 0.75}

{0.5, 0.5}

{0.75, 0.25}

{1, 0}

MATHEMATICS KNOWLEDGE RESEARCH WORK MATHEMATICS 
RESEARCH WORK SCIENTIFIC MATHEMATICS WORK 

SCIENTIFIC KNOWLEDGE MATHEMATICS SCIENTIFIC 
HEART LOVE TEARS KNOWLEDGE HEART 

MATHEMATICS HEART RESEARCH LOVE MATHEMATICS 
WORK TEARS SOUL KNOWLEDGE HEART

WORK JOY SOUL TEARS MATHEMATICS 
TEARS LOVE LOVE LOVE SOUL

TEARS LOVE JOY SOUL LOVE TEARS SOUL SOUL TEARS JOY





Gibbs sampling
iteration
1

i wi di zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2



Gibbs sampling
iteration
1             2

i wi di zi zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

?

















A selection of topics (TASA)
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The14 “shape7” of4 a23 female115 mating115 preference125 is32 the14

relationship7 between4 a23 male115 trait15 and37 the14 probability7 of4

acceptance21 as43 a23 mating115 partner20, The14 shape7 of4 preferences115

is32 important49 in5 many39 models6 of4 sexual115 selection46, mate115

recognition125, communication9, and37 speciation46, yet50 it41 has18

rarely19 been33 measured17 precisely19, Here12 I9 examine34 preference7

shape7 for5 male115 calling115 song125 in22 a23 bushcricket*13 (katydid*48).
Preferences115 change46 dramatically19 between22 races46 of4 a23 species15,
from22 strongly19 directional11 to31 broadly19 stabilizing45 (but50 with21 a23

net49 directional46 effect46), Preference115 shape46 generally19 matches10

the14 distribution16 of4 the14 male115 trait15, This41 is32 compatible29 with21

a23 coevolutionary46 model20 of4 signal9-preference115 evolution46, 
although50 it41 does33 not37 rule20 out17 an23 alternative11 model20, 
sensory125 exploitation150. Preference46 shapes40 are8 shown35 to31 be44

genetic11 in5 origin7.
(graylevel = membership in topic 115) 

Ritchie, Michael G. "The Shape of Female Mating Preferences."  PNAS 93 (1996): 14628-14631.
 Copyright 1996. Courtesy of the National Academy of Sciences, U.S.A. Used with permission.
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Ritchie, Michael G. "The Shape of Female Mating Preferences."  PNAS 93 (1996): 14628-14631.
 Copyright 1996. Courtesy of the National Academy of Sciences, U.S.A. Used with permission.
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Joint models of syntax and semantics 
(Griffiths, Steyvers, Blei & Tenenbaum, NIPS 2004)

• Embed topics model inside an nth order 
Hidden Markov Model:

Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum. "Integrating Topics  
and Syntax." Advances in Neural Information Processing Systems 17 (2005).

Image removed due to copyright considerations. Please see:
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and Syntax." Advances in Neural Information Processing Systems 17 (2005).
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Syntactic classes
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Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum. "Integrating Topics  
and Syntax." Advances in Neural Information Processing Systems 17 (2005).
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Corpus-specific factorization
(NIPS)

Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum. "Integrating Topics  
and Syntax." Advances in Neural Information Processing Systems 17 (2005).
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Syntactic classes in PNAS
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Semantic highlighting
Darker words are more likely to have been generated from the
topic-based “semantics” module:



Outline

• Final thoughts on hierarchical Bayesian 
models and MCMC

• Bayesian classification
• Bayesian concept learning



Concepts and categories

• A category is a set of objects that are treated 
equivalently for some purpose. 

• A concept is a mental representation of the 
category.

• Functions for concepts:
– Categorization/classification
– Prediction
– Inductive generalization
– Explanation
– Reference in communication and thought



• Classical view of concepts (1950’s-1960’s): 
Concepts are rules or symbolic 
representations for classifying.

• Examples
– Psychology: Bruner et al.

"Striped and Three Borders":
Conjunctive Concept

Figure by MIT OCW.



• Classical view of concepts (1950’s-1960’s): 
Concepts are rules or symbolic 
representations

• Examples
– AI: Winston’s arch learner

Winston, P. H., ed. The Psychology of Computer Vision. New York, NY: McGaw-Hill, 1975. 
ISBN: 0070710481.
http://www.rci.rutgers.edu/~cfs/472_html/Learn/LearnGifs/ArchExSeq.gif

Image removed due to copyright considerations. Please see:
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http://www.rci.rutgers.edu/~cfs/472_html/Learn/LearnGifs/ArchExSeq.gif


• Statistical view of concepts (1960’s-1970’s)
• Examples

– Machine learning/statistics: Iris classification

Images removed due to copyright considerations.



• Standard version (1960’s-1970’s): Concepts 
are statistical representations for classifying.

• Examples
– Psychology: Posner and Keele

Posner, M. I., and S. W. Keele. "On the Genesis of Abstract Ideas." Journal of 
Experimental Psychology 77 (1968): 353-363.

Image removed due to copyright considerations. Please see:



Different levels of random distortion:

Images removed due to copyright considerations.



Statistical pattern recognition

Two-class classification problem:  

Images removed due to copyright considerations.

The task: Given an object generated from class 1 or class 2, 
infer the generating class. 



Formalizing two-class classification:  

Images removed due to copyright considerations.

The task: Observe x generated from c1 or c2, compute: 

)()|()()|(
)()|()|(

2211

11
1 cpcxpcpcxp

cpcxpxcp
+

=

Different approaches vary in how they represent p(x|cj). 



Parametric approach

• Assume a simple canonical form for p(x|cj).
• E.g., Gaussian distributions:

Images removed due to copyright considerations.



Parametric approach

• Assume a simple canonical form for p(x|cj).
• The simplest Gaussians have all dimensions 

independent, variances equal for all classes:
– Classification based on 

distance to means.
– Covariance ellipse 

determines the distance 
metric. 



Parametric approach

• Assume a simple canonical form for p(x|cj).
• The simplest Gaussians have all dimensions 

independent, variances equal for all classes:
– Bayes net representation:

C

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( iijix
ji ecxp σµ−−∝

“naïve Bayes”



Parametric approach

• Other possible forms:
– All dimensions 

independent with 
variances equal across 
dimensions and classes:

C “naïve Bayes”

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( σµijix
ji ecxp −−∝



Parametric approach

• Other possible forms:
– All dimensions 

independent with equal 
variances, but variances 
differ across classes:

C “naïve Bayes”

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( jijix
ji ecxp σµ−−∝



Parametric approach

• Other possible forms:
– All dimensions 

independent, variances 
differ across dimensions 
and across classes:

C “naïve Bayes”

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( ijijix
ji ecxp σµ−−∝



Parametric approach

• Other possible forms:
– Arbitrary covariance 

matrices for each class.

C

x = {x1, x2}

Board formula



Parametric approach

• Assume a simple canonical form for p(x|cj).
• The simplest Gaussians have all dimensions 

independent, variances equal for all classes:
– Bayes net representation:

C

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( iijix
ji ecxp σµ−−∝

“naïve Bayes”



Learning
• Hypothesis space of possible Gaussians:

• Find parameters that maximize likelihood of 
examples.
– = mean of examples of class j.
– = standard deviation along dimension i, for 

examples in each class.

jµr

iσ

Images removed due to copyright considerations.



Relevance to human concept 
learning

• Natural categories often have Gaussian (or 
other simple parametric forms) in 
perceptual feature spaces.

• Prototype effects in categorization (Rosch)
• Posner & Keele studies of prototype 

abstraction in concept learning. 



Posner and Keele: design

Posner, M. I., and S. W. Keele. "On the Genesis of Abstract Ideas." Journal of 
Experimental Psychology 77 (1968): 353-363.

Image removed due to copyright considerations. Please see:



Posner and Keele: results

Unseen prototype (“Schema”) classified as well as memorized
variants, and much better than new random variants (“5”). 

Posner, M. I., and S. W. Keele. "On the Genesis of Abstract Ideas." Journal of 
Experimental Psychology 77 (1968): 353-363.

Image removed due to copyright considerations. Please see:



Parametric approach
C• Other possible forms:

– All dimensions 
independent with 
variances equal across 
dimensions and classes:

“naïve Bayes”

x1 x2

)|()|()|( 21 jjj cxpcxpcxp ×=

)2/()( 22

)|( σµijix
ji ecxp −−∝

Equivalent to prototype model:
Prototype of class j:
Variability of categories:  

},{ 21 jjj µµµ =
r

σ



Limitations

• Of this empirical paradigm?
• Of this computational approach?



Limitations
• Is categorization just discrimination among mutually 

exclusive classes?  
– Overlapping concepts? Hierarchies?  “None of the above”? 

Can we learn a single new concept?

• How do we learn concepts from just a few positive 
examples? 
– Learning with high certainty from little data.
– Schema abstraction from one imperfect example.

• Are most categories Gaussian, or any simple 
parametric shape?  
– What about superordinate categories?
– What about learning rule-based categories? 



Limitations
• Is prototypicality = degree of membership?

– Armstrong et al.: No, for classical rule-based categories
– Not for complex real-world categories either: “Christmas 

eve”, “Hollywood actress”, “Californian”, “Professor”
– For natural kinds, huge variability in prototypicality 

independent of membership.

• Richer concepts? 
– Meaningful stimuli, background knowledge, theories?
– Role of causal reasoning? “Essentialism”?

• Difference between “perceptual” and “cognitive” 
concepts?  
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