
Outline

• Limits of Bayesian classification
• Bayesian concept learning
• Probabilistic models for unsupervised and 

semi-supervised category learning



Limitations
• Is categorization just discrimination among mutually 

exclusive classes?  
– Overlapping concepts? Hierarchies?  “None of the above”? 

Can we learn a single new concept?

• Are most categories Gaussian, or any simple 
parametric shape?  
– What about superordinate categories?
– What about learning rule-based categories? 

• How do we learn concepts from just a few positive 
examples? 
– Learning with high certainty from little data.
– Generalization from one example.



Feldman (1997)

Here is a blicket:

Please draw six more blickets.
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Limitations
• Is prototypicality = degree of membership?

– Armstrong et al.: No, for classical rule-based categories
– Not for complex real-world categories either: “Christmas 

eve”, “Hollywood actress”, “Californian”, “Professor”
– For natural kinds, huge variability in prototypicality 

independent of membership.

• Richer concepts? 
– Meaningful stimuli, background knowledge, theories?
– Role of causal reasoning? “Essentialism”?

• Difference between “perceptual” and “cognitive” 
categories?
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Concepts and categories

• A category is a set of objects that are treated 
equivalently for some purpose. 

• A concept is a mental representation of the 
category.

• Functions for concepts:
– Categorization/classification
– Prediction
– Inductive generalization
– Explanation
– Reference in communication and thought



Everyday concept learning
• Learning words from examples
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Everyday concept learning

• Learning words from examples
• Inductive generalization

Squirrels have biotinic acid in their blood.
Gorillas have biotinic acid in their blood.

Horses have biotinic acid in their blood.

(premises)

(conclusion)



Tenenbaum (2000)
• Takes reference and generalization as 

primary.
• Concept is a pointer to a set of things in the 

world.  
– Learner constructs a hypothesis space of possible 

sets of entities (as in the classical view). 
– You may not know what that set is (unlike in the 

classical view). 
– Through learning you acquire a probability 

distribution over possible sets. 



The number game
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• Program input: number between 1 and 100
• Program output: “yes” or “no” 



The number game

• Learning task:
– Observe one or more positive (“yes”) examples.
– Judge whether other numbers are “yes” or “no”.

Image removed due to copyright considerations.



The number game

Examples of
“yes” numbers

Generalization
judgments (N = 20)

60 Diffuse similarity
Image removed due to 
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Examples of
“yes” numbers

Generalization
judgments (n = 20)
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Diffuse similarity

Rule: 
“multiples of 10”
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The number game

Examples of
“yes” numbers

Generalization
judgments (N = 20)

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
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The number game

Examples of
“yes” numbers

Generalization
judgments (N = 20)

16

16  8  2  64

16  23  19  20

Diffuse similarity

Rule: 
“powers of 2”

Focused similarity:
numbers near 20
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The number game

Main phenomena to explain:
– Generalization can appear either similarity-

based (graded) or rule-based (all-or-none). 
– Learning from just a few positive examples. 

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60
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Divisions into “rule” and 
“similarity” subsystems?

• Category learning
– Nosofsky, Palmeri et al.: RULEX
– Erickson & Kruschke: ATRIUM

• Language processing
– Pinker, Marcus et al.: Past tense morphology 

• Reasoning
– Sloman 
– Rips
– Nisbett, Smith et al. 



Bayesian model
• H: Hypothesis space of possible concepts:

– h1  = {2, 4, 6, 8, 10, 12, …, 96, 98, 100}  (“even numbers”)
– h2 = {10, 20, 30, 40, …, 90, 100}  (“multiples of 10”)
– h3 = {2, 4, 8, 16, 32, 64}  (“powers of 2”)
– h4 = {50, 51, 52, …, 59, 60}  (“numbers between 50 and 60”)
– . . .

Representational interpretations for H:
– Candidate rules
– Features for similarity
– “Consequential subsets” (Shepard, 1987)



Where do the hypotheses come 
from?

Additive clustering (Shepard & Arabie, 1977):

:  similarity of stimuli i, j
:  weight of cluster k
:  membership of stimulus i in cluster k
(1 if stimulus i in cluster k, 0 otherwise)

Equivalent to similarity as a weighted sum of 
common features (Tversky, 1977). 
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Additive clustering for the integers 0-9: 

∑=
k

jkikkij ffws

Rank Weight Stimuli in cluster Interpretation

0   1   2   3   4   5   6   7   8   9

1 .444 *        *                  * powers of two

2 .345 * * * small numbers

3 .331 *     *     * multiples of three

4 .291 * * * * large numbers

5 .255 * * * * * middle numbers

6 .216 *   *   *   *   * odd numbers

7 .214 * * * * smallish numbers

8 .172 * * * * * largish numbers



Three hypothesis subspaces for 
number concepts

• Mathematical properties (24 hypotheses): 
– Odd, even, square, cube, prime numbers
– Multiples of small integers
– Powers of small integers 

• Raw magnitude (5050 hypotheses): 
– All intervals of integers with endpoints between 

1 and 100.
• Approximate magnitude (10 hypotheses):

– Decades (1-10, 10-20, 20-30, …)



Bayesian model
• H: Hypothesis space of possible concepts:

– Mathematical properties: even, odd, square, prime, . . . .
– Approximate magnitude: {1-10}, {10-20}, {20-30}, . . . . 
– Raw magnitude: all intervals between 1 and 100.

• X = {x1, . . . , xn}:  n examples of a concept C. 
• Evaluate hypotheses given data:

– p(h) [“prior”]: domain knowledge, pre-existing biases 
– p(X|h) [“likelihood”]: statistical information in examples.
– p(h|X) [“posterior”]: degree of belief that h is the true extension of C.
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Likelihood: p(X|h)
• Size principle: Smaller hypotheses receive greater 

likelihood, and exponentially more so as n increases.

• Follows from assumption of randomly sampled examples.

• Captures the intuition of a representative sample. 
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Illustrating the size principle

2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

h2h1
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Data slightly more of a coincidence under h1
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Relation to the “subset principle”

• Asymptotically equivalent 
– Subset principle = maximum likelihood
– Size principle more useful when learning from 

just a few examples.  
• Size principle is graded, while subset 

principle is all-or-none.
• Bayesian formulation allows the size 

principle to trade off against the prior.



Prior: p(h) 
• Choice of hypothesis space embodies a strong prior: 

effectively, p(h) ~ 0 for many logically possible but 
conceptually unnatural hypotheses. 

• Prevents overfitting by highly specific but unnatural 
hypotheses, e.g. “multiples of 10 except 50 and 70”.



Constructing more flexible priors

• Start with a base set of regularities R and combination 
operators C.

• Hypothesis space = closure of R under C.
– C = {and, or}: H = unions and intersections of regularities in R (e.g., 

“multiples of 10 between 30 and 70”).  

– C = {and-not}: H = regularities in R with exceptions (e.g., “multiples 
of 10 except 50 and 70”). 

• Two qualitatively similar priors:
– Description length: number of combinations in C needed to generate 

hypothesis from R.

– Bayesian Occam’s Razor, with model classes defined by number of 
combinations: more combinations        more hypotheses       lower prior 



Prior: p(h) 
• Choice of hypothesis space embodies a strong prior: 

effectively, p(h) ~ 0 for many logically possible but 
conceptually unnatural hypotheses. 

• Prevents overfitting by highly specific but unnatural 
hypotheses, e.g. “multiples of 10 except 50 and 70”.

• p(h) encodes relative plausibility of alternative theories:
– Mathematical properties: p(h) ~ 1
– Approximate magnitude: p(h) ~ 1/10
– Raw magnitude:               p(h) ~ 1/50  (on average)

• Also degrees of plausibility within a theory,
e.g., for magnitude intervals of size s:

10,)()( == − γγ γsessp
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Hierarchical 
priors

• Higher-order hypothesis: is this
coin fair or unfair?

• Example probabilities:
– P(fair) = 0.99
– P(θ |fair) is Beta(1000,1000)
– P(θ |unfair) is Beta(1,1)

• 25 heads in a row propagates up, 
affecting θ and then P(fair|D)

d1 d2 d3 d4

θ

FH,FT

social knowledge
physical  knowledge

fair/unfair?

P(fair|25 heads)        P(25 heads|fair)      P(fair) 
P(unfair|25 heads)     P(25 heads|unfair)  P(unfair) = =  9 x 10-5



Hierarchical 
priors

• Higher-order hypothesis: is this
concept mathematical or 
magnitude-based?

• Example probabilities:
– P(magnitude) = 0.99
– P(h|magnitude) ...
– P(h|mathematical) ...

• Observing 8, 4, 64, 2, 16, … 
could quickly overwhelm this 
prior.

h

P(h)

social knowledge
number  knowledge

math/magnitude?

x1 x2 x3 x4



Posterior: 

• X = {60, 80, 10, 30}

• Why prefer “multiples of 10” over “even 
numbers”?  p(X|h).  

• Why prefer “multiples of 10” over “multiples of 
10 except 50 and 20”?  p(h).

• Why does a good generalization need both high 
prior and high likelihood?  p(h|X) ~ p(X|h) p(h) 
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Bayesian Occam’s Razor
Probabilities provide a common currency for 
balancing model complexity with fit to the data.
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Generalizing to new objects

Given p(h|X), how do we compute      , 
the probability that C applies to some new 
stimulus y? 
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Generalizing to new objects
Hypothesis averaging:

Compute the probability that C applies to some new 
object y by averaging the predictions of all hypotheses h, 
weighted by p(h|X):
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Examples: 
16
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Examples: 
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Examples: 
16
23
19
20
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+ Examples Human generalization

60

60  80  10  30

60  52  57  55

Bayesian Model 

16

16  8  2  64

16  23  19  20
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Summary of the Bayesian model

• How do the statistics of the examples interact with 
prior knowledge to guide generalization?

• Why does generalization appear rule-based or 
similarity-based?

priorlikelihoodposterior ×∝

principle size averaging hypothesis +

broad p(h|X):  similarity gradient 
narrow p(h|X):  all-or-none rule  



Summary of the Bayesian model

• How do the statistics of the examples interact with 
prior knowledge to guide generalization?

• Why does generalization appear rule-based or 
similarity-based?

priorlikelihoodposterior ×∝

principle size averaging hypothesis +

Many h of similar size:  broad p(h|X)
One h much smaller:  narrow p(h|X)  



Discussion points
• Relation to “Bayesian classification”?

– Causal attribution versus referential inference.
– Which is more suited to natural concept 

learning?
• Relation to debate between rules / logic / symbols 

and similarity / connections / statistics? 
• Where do the hypothesis space and prior 

probability distribution come from?
• What about learning “completely novel concepts”, 

where you don’t already have a hypothesis space?



Hierarchical priors

d1 d2 d3 d4

FH,FT

d1 d2 d3 d4

θ1

d1 d2 d3 d4

θ ~ Beta(FH,FT)

Coin 1 Coin 2 Coin 200...θ2 θ200

• Latent structure captures what is common to all coins, 
and also their individual variability



Hierarchical priors

P(h)

h1

Concept 1 Concept 2 Concept 200...h2 h200

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

• Latent structure captures what is common to all 
concepts, and also their individual variability

• Is this all we need?



P(h)

h1

Concept 1 Concept 2 Concept 200...h2 h200

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

social knowledge
number  knowledge

math/magnitude?

• Hypothesis space is not just an arbitrary collection of 
hypotheses, but a principled system.

• Far more structured than our experience with specific 
number concepts. 
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