
Outline

• Probabilistic models for unsupervised and 
semi-supervised category learning

• Nonparametric models for categorization: 
exemplars, neural networks



EM algorithm
0. Guess initial parameter values θ = {µ, σ, p(cj)}. 
1. “Expectation” step: Given parameter estimates, 

compute expected values of assignments zj
(k)

2. “Maximization” step: Given expected 
assignments, solve for maximum likelihood 
parameter estimates: 
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What EM is really about
• Want to maximize log p(X|θ), e.g. 
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What EM is really about
• Want to maximize log p(X|θ), e.g. 

• Instead, maximize expected value of the 
“complete data” loglikelihood, log p(X, Z|θ):

– E-step: Compute expectation 

– M-step: Maximize
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Good features of EM

• Convergence
– Guaranteed to converge to at least a local maximum of 

the likelihood.  
– Likelihood is non-decreasing across iterations (useful 

for debugging).  

• Efficiency
– Convergence usually occurs within a few iterations 

(super-linear). 

• Generality
– Can be defined for many simple probabilistic models.



Limitations of EM

• Local minima
– E.g., one component poorly fits two clusters, while two 

components split up a single cluster.  

• Degeneracies
– Two components may merge.  
– A component may lock onto just one data point, with 

variance going to zero. 

• How do you choose number of clusters?
• May be intractable for complex models.  



Mixture models for binary data
• Data:                              ,
• Probabilistic model: mixture of Bernoulli 

distributions (coin flips). 
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EM algorithm
0. Guess initial parameter values θ = {µ, p(cj)}. 
1. “Expectation” step: Given parameter estimates, 

compute expected values of assignments zj
(k)

2. “Maximization” step: Given expected 
assignments, solve for maximum likelihood 
parameter estimates: 
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Applications of EM to human 
learning

• Chicken and egg problems
– Categories, prototypes
– Categories, similarity metric (feature weights)



Additive clustering for the integers 0-9: 
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Rank Weight Stimuli in cluster Interpretation

0   1   2   3   4   5   6   7   8   9

1 .444 *        *                  * powers of two

2 .345 * * * small numbers

3 .331 *     *     * multiples of three

4 .291 * * * * large numbers

5 .255 * * * * * middle numbers

6 .216 *   *   *   *   * odd numbers

7 .214 * * * * smallish numbers

8 .172 * * * * * largish numbers



Applications of EM to human 
learning

• Chicken and egg problems
– Categories, prototypes
– Categories, similarity metric (feature weights)
– Categories, outliers 
– Categories, unobserved features



Learning as interpolation of  
missing data

• Interpolating a sparse binary matrix:
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• Interpolating a sparse binary matrix:

– Assume mixture of Bernoulli 
distributions for objects Pk:

– Learn with EM, treating both class labels and 
unobserved features as missing data.  
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Applications of EM to human 
learning

• Chicken and egg problems
– Categories, prototypes
– Categories, similarity metric (feature weights)
– Categories, outliers 
– Categories, unobserved features
– Theories, similarity metric (feature weights) 



Is B or C more “similar” to A?

A
B

C



Is B or C more “similar” to A?

A
B

C



EM for factor analysis
• A simple causal theory

– Generate points at random positions z on a line 
segment.  (Unobserved “latent” data)

– Linearly embed these points (with slope a, 
intercept b) in two dimensions. (Observed data)

– Add Gaussian noise to one of the two observed 
dimensions (x-dim or y-dim). 

• Examples:
– Sensory integration
– Weighing the advice of experts 



EM for factor analysis
• A simple causal theory

– Generate points at random positions z on a line 
segment.  (Unobserved “latent” data)

– Linearly embed these points (with slope a, 
intercept b) in two dimensions. (Observed data)

– Add Gaussian noise to one of the two observed 
dimensions (x-dim or y-dim). 

• Goal of learning:
– Estimate parameters: a, b, dimension of noise 

(x-dim or y-dim)
– Infer unobserved data: z



Applications of EM to human 
learning

• Chicken and egg problems
– Categories, prototypes
– Categories, similarity metric (feature weights)
– Categories, unobserved features
– Categories, outliers
– Theories, similarity metric (feature weights)
– Learning in Bayes nets with hidden variables
– Others?  



Fried and Holyoak (1984)

• Can people learn probabilistic categories 
without labels?

• How does learning with labels differ from 
learning without labels?

• What kind of concept is learned?
– Prototype (mean)
– Prototype + variability (mean + variances)

• Is categorization close to ideal* of a 
Gaussian mixture model? 



Fried and Holyoak stimuli

Fried, L. S., and K. J. Holyoak. “Induction of Category Distributions: A Framework for Classification Learning.” 
Journal of Experimental Psychology: Learning, Memory and Cognition 10 (1984): 234-257.
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Fried and Holyoak, Exp. 4
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Fried and Holyoak, Exp. 2

Fried, L. S., and K. J. Holyoak. “Induction of Category Distributions: A Framework for Classification Learning.” 
Journal of Experimental Psychology: Learning, Memory and Cognition 10 (1984): 234-257.

Image removed due to copyright considerations. Please see:



Fried and Holyoak (1984)

• Can people learn probabilistic categories 
without labels?  Yes.

• How does learning with labels differ from 
learning without labels?  It’s better. 

• What kind of concept is learned?
– Prototype (mean)
– Prototype + variability (mean + variances)

• Is categorization close to ideal* of a 
Gaussian mixture model?  Yes.



Relevance for human cognition

• How important are these three paradigms 
for human category learning?
– Labeled examples
– Unlabeled examples
– Unlabeled examples but known # of classes

• Other ways of combining labeled and 
unlabeled examples that are worth 
pursuing?



Semi-supervised learning

• Learning with many unlabeled examples 
and a small number of labeled examples.

• Important area of current work in machine 
learning. 
– E.g., learning about the web (or any large 

corpus)
• Natural situation in human learning.

– E.g., word learning
– Not much research here though…. 



The benefit of unlabelled data

Class 1

Class 2

Test point
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Is this really a new problem?

• Why not just do unsupervised clustering 
first and then label the clusters? 



Complications

• Concept labels inconsistent with clusters

“This is a blicket.”

“This is a gazzer.”



Complications

• Outliers “This is a blicket.”

“This is a gazzer.”
“This is a wug.”



Complications

• Overlapping clusters

“This is a blicket.”

“This is a blicket.”

“This is a blicket.”



Complications

• How many clusters? “This is a blicket.”

“These are also blickets.”



Complications

• How many clusters? “This is a blicket.”

“These are also blickets.”



Semi-supervised learning

• Learning with many unlabeled examples 
and a small number of labeled examples. 

• Approaches based on EM with mixtures 
– Identify each concept with one mixture 

component.  
• Labels serve to anchor class assignments in E-step.

C

x1 L...  xD  

Deterministic (1-to-1) link

(Could also be many-to-1.)



Semi-supervised learning

• Learning with many unlabeled examples 
and a small number of labeled examples. 

• Approaches based on EM with mixtures
– Treat concept labels as separate features, 

conditionally independent of observed features 
given classes.  

• e.g., Ghahramani and Jordan (cf. Anderson).

C

x1 L...  xD  

Probabilistic (Bernoulli) link



Other approaches to semi-
supervised learning

• Graph-based
– Szummer & Jaakkola
– Zhu, Ghahramani & Lafferty
– Belkin & Niyogi
– Blum & Chawla

• Tree-based
– Tenenbaum and Xu; Kemp, Tenenbaum, et al.



Graph-based semi-supervised 
learning

E.g., Class labeling function is smooth over 
a graph of k-nearest neighbors:

Image removed due to copyright considerations.



What does the word “dog” refer to? 
• All (and only) dogs?
• All mammals?
• All animals? 
• All labradors? 
• All yellow labradors?

• A motivating problem: learning words for kinds of objects

Tree-based semi-supervised learning

• Undetached dog parts?
• All dogs plus Silver? 
• All yellow things? 
• All running things? 
• . . .

Image removed due to 
copyright considerations.
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Bayesian model of word learning
• H: Hypotheses correspond to taxonomic clusters

– h1 = “all (and only) dogs”
– h2 = “all mammals”

• Same model as for learning number concepts, but 
with two new features specific to this task:
– Prior favors more distinctive taxonomic clusters.
– Prior favors naming categories at a privileged (basic) level.

– h3 = “all animals”
– h4 = “all labradors”
– . . .



Image removed due to copyright considerations.

Bayes (without basic-level bias)Bayes (with basic-level bias)
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The objects of planet Gazoob

Image removed due to copyright considerations.
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Adults:

Bayes:  (with basic-level bias)

Image removed due to copyright considerations.
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Semi-supervised learning?
• Interpolating a sparse binary matrix:
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• Use features to infer tree or graph over objects. 
• Use tree or graph to generate priors for the 

extensions of words.
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