
Outline

• Bayesian Ockham’s Razor
• Bayes nets (directed graphical models)

– Computational motivation: tractable reasoning
– Cognitive motivation: causal reasoning 
– Sampling methods for approximate inference



Coin flipping

• Comparing two simple hypotheses
– P(H) = 0.5 vs. P(H) = 1.0

• Comparing simple and complex hypotheses
– P(H) = 0.5 vs. P(H) = θ

• Comparing infinitely many hypotheses
– P(H) = θ :  Infer θ



Comparing simple and complex hypotheses

d1 d2 d3 d4

P(H) = θ

θ

vs.d1 d2 d3 d4

Fair coin, P(H) = 0.5

• Which provides a better account of the data: 
the simple hypothesis of a fair coin, or the 
complex hypothesis that P(H) = θ ?



Comparing simple and complex hypotheses

• P(H) = θ is more complex than P(H) = 0.5 in 
two ways:
– P(H) = 0.5 is a special case of P(H) = θ
– for any observed sequence D, we can choose θ

such that D is more probable than if P(H) = 0.5

nNnDP −−= )1()|( θθθBernoulli Distribution:
n = # of heads in D
N = # of flips in D
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Comparing simple and complex hypotheses

• P(H) = θ is more complex than P(H) = 0.5 in 
two ways:
– P(H) = 0.5 is a special case of P(H) = θ
– for any observed sequence X, we can choose θ

such that X is more probable than if P(H) = 0.5

• How can we deal with this?
– Some version of Ockham’s razor:?
– Bayes: just the law of conservation of belief!  



Comparing simple and complex hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

Computing P(D|H1) is easy: 

Compute P(D|H2) by averaging over θ:
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Comparing simple and complex hypotheses
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Computing P(D|H1) is easy: 

Compute P(D|H2) by averaging over θ:
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2 )|()|( θθ dDPHDP (assume uniform

prior on θ)
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Comparing simple and complex hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

Computing P(D|H1) is easy: 

Compute P(D|H2) by averaging over θ:
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(How is this an average?)

• Consider a discrete approximation with 11 
values of θ, from 0 to 1 in steps of 1/10:
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Law of conservation of belief

• Two different stages
– Prior over model parameter:

In a model with a wider range of parameter 
values, each setting of the parameters 
contributes less to the model predictions.  
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Law of conservation of belief

• Two different stages
– Prior over model parameter:

– Likelihood (probability over data):

A model that predicts some data sets very well 
must predict others very poorly.
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Bayesian Ockham’s Razor

Image removed due to copyright 
considerations.



Two alternative models

• Fudged Newton
– A new planet: Vulcan?
– Matter rings around the sun?
– Sun is slightly lopsided.
– Exponent in  Universal law of gravitation is      

2 + ε instead of 2.
– Each version of this hypothesis has a fudge 

factor, whose most likely value we can estimate 
empirically . . . . 



• Simplifying assumption: predictions of 
fudged Newton are Gaussian around 0. 

Image removed due to copyright considerations.



More formally….

ε : fudge factor

∫=
ε

ε )|,()|( MdpMdp
Image removed due to copyright 

considerations.

∫=
ε
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Two alternative models

• Fudged Newton
• Einstein: General Relativity + experimental 

error (+/- 2 arc seconds/century). 



Comparing the models

Image removed due to copyright considerations.



Where is Occam’s razor?
• Why not a more “complex” fudge, in which 

the Gaussian can vary in both mean and 
variance?

Image removed due to copyright considerations.



Bayesian Occam’s razor
• Recall: predictions of a model are the 

weighted average over all parameter values.

• Only a small set of parameter values fit the 
data well, so average fit is poor. 
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Image removed due to copyright considerations.



Law of conservation of belief
1)( ==∑ i

i
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• Two different stages
– Priors over model parameters:

– Likelihood (probability over data):

A model that can predict many possible data sets 
must assign each of them low probability.
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Bayesian Occam’s Razor 
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Ockham’s Razor in curve fitting 
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A model that can predict many possible data sets must assign each of 
them low probability.
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Hierarchical prior

1st order poly 2nd order poly 3rd order poly . . . .



• Assume y is a linear function of x plus Gaussian 
noise: 

• Linear regression is maximum likelihood: Find the 
function f: x y that makes the data most likely. 

Likelihood function for regression

Image removed due to copyright considerations.



• Assume y is a linear function of x plus Gaussian 
noise: 

• Linear regression is maximum likelihood: Find the 
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• Assume y is a linear function of x plus Gaussian 
noise: 

• Not the maximum likelihood function…. 

Likelihood function for regression

Image removed due to copyright considerations.



For best fitting version of each model:

Prior Likelihood

high low

medium high

very very very
very low

very high
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Some questions
• Is the Bayesian Ockham’s razor “purely 

objective”? 



Some questions
• Is the Bayesian Ockham’s razor “purely 

objective”? No.
– Priors matter.  (What about uninformative 

priors?)
– Choice of description language/basis 

functions/hypothesis classes matters. 
– Classes of hypotheses + priors = theory. 

(c.f. Martian grue, coin flipping)



• What do we gain from Bayes over 
conventional Ockham’s razor?



• What do we gain from Bayes over 
conventional Ockham’s razor?
– Isolates all the subjectivity in the choice of 

hypothesis space and priors
– Gives a canonical way to measure simplicity. 
– A common currency for trading off simplicity and 

fit to the data: probability.
– A rigorous basis for the intuition that “the 

simplest model that fits is most likely to be true”. 
– Measure of complexity not just # of parameters.

• Depends on functional form of the model



Three one-parameter models for 
10-bit binary sequences

• Model 1:
– Choose parameter α between 0 and 1.
– Round(10*α) 0’s followed by [10 - Round(10*α)] 1’s.

• Model 2:
– Choose parameter α between 0 and 1.
– Draw 10 samples from Bernoulli distribution (weighted 

coin flips) with parameter α.
• Model 3:

– Choose parameter α between 0 and 1.
– Convert-to-binary(Round(2^10*α)).



• What do we gain from Bayes over 
conventional Ockham’s razor?
– Isolates all the subjectivity in the choice of 

hypothesis space and priors
– Gives a canonical way to measure simplicity. 
– A common currency for trading off complexity 

and fit to the data: probability.
– A rigorous basis for the intuition that “the simplest 

model that fits is most likely to be true”. 
– Measure of complexity not just # of parameters.

• Depends on functional form of the model
• Depends on precise shape of priors (e.g., different 

degrees of smoothness)



Two infinite-parameter models 
for regression

M1

M1

M2

M2

p 
(D

 =
 d

 \ 
M

)

p (f   M1)

p (f   M2)

Smooth f

Smooth f

Bumpy f

Bumpy f

Data

D

Figure by MIT OCW.



Outline

• Bayesian Ockham’s Razor
• Bayes nets (directed graphical models)

– Computational motivation: tractable reasoning
– Cognitive motivation: causal reasoning 
– Sampling methods for approximate inference



Directed graphical models
X3 X4

X5

X1

X2

• Consist of
– a set of nodes
– a set of edges
– a conditional probability distribution for each 

node, conditioned on its parents, multiplied 
together to yield the distribution over variables

• Constrained to directed acyclic graphs (DAG)
• AKA: Bayesian networks, Bayes nets



Undirected graphical models

• Consist of
– a set of nodes
– a set of edges
– a potential for each clique, multiplied together to 

yield the distribution over variables
• Examples

– statistical physics: Ising model
– early neural networks (e.g. Boltzmann machines)

– low- and mid-level vision

X1

X2

X3 X4

X5



Properties of Bayesian networks

• Efficient representation and inference
– exploiting dependency structure makes it easier 

to work with distributions over many variables
• Causal reasoning

– directed representations elucidates the role of 
causal structure in learning and reasoning 

– model for non-monotonic reasoning (esp. 
“explaining away” or causal discounting). 

– reasoning about effects of interventions 
(exogenous actions on a causal system)



Efficient representation and inference

• Three binary variables: Cavity, Toothache, Catch



Efficient representation and inference

• Three binary variables: Cavity, Toothache, Catch
• Specifying P(Cavity, Toothache, Catch) requires 7 

parameters.
– e.g., 1 for each set of values: ,                      

, ..., minus 1 because it’s a 
probability distribution

– e.g., chain of conditional probabilities: 

),|(),,|(),,|(
),,|(),|(),|(),(
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Efficient representation and inference

• Three binary variables: Cavity, Toothache, Catch
• Specifying P(Cavity, Toothache, Catch) requires 7 

parameters.
• With n variables, we need 2n -1 parameters

– Here n=3.  Realistically, many more: X-ray, diet, oral 
hygiene, personality, . . . . 

• Problems:
– Intractable storage, computation, and learning
– Doesn’t really correspond to the world’s structure, or 

what we know of the world’s structure. 



Conditional independence
• Probabilistically: all three variables are dependent, 

but Toothache and Catch are independent given 
the presence or absence of Cavity. 

• Causally: Toothache and Catch are both effects of 
Cavity, via independent causal mechanisms. 



Conditional independence
• Probabilistically: all three variables are dependent, 

but Toothache and Catch are independent given 
the presence or absence of Cavity. 

• Causally: Toothache and Catch are both effects of 
Cavity, via independent causal mechanisms.

• In probabilistic terms: 
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[Without conditional independence]



Conditional independence
• Probabilistically: all three variables are dependent, 

but Toothache and Catch are independent given 
the presence or absence of Cavity.

• Causally: Toothache and Catch are both effects of 
Cavity, via independent causal mechanisms. 

• In probabilistic terms: 

• With n pieces of evidence, x1, …, xn, we need 2n
conditional probabilities:

)|()|()|( cavcatchPcavachePcavcatchacheP =∧

)|()|()|( cavcatchPcavachePcavcatchacheP ¬=∧¬
[ ] )|()|(1 cavcatchPcavacheP−=

)|(),|( cavxPcavxP ii ¬

[With conditional independence]



A simple Bayes net
• Graphical representation of relations between a set of 

random variables:

• Causal interpretation: independent local mechanisms
• Probabilistic interpretation: factorizing complex terms

Cavity

Toothache Catch
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A more complex system
Battery

• Joint distribution sufficient for any inference:

Radio Ignition Gas

Starts

On time to work
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A more complex system
Battery

• Joint distribution sufficient for any inference:

Radio Ignition Gas

Starts

On time to work
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A more complex system
Battery

• Joint distribution sufficient for any inference:

• General inference algorithms via local computations
– for graphs without loops: belief propagation 
– in general: variable elimination, junction tree 

Radio Ignition Gas

Starts

On time to work

)|(),|()()|()|()(),,,,,( SOPGISPGPBIPBRPBPOSGIRBP =



More concrete representation

Burglary

Alarm

Earthquake

JohnCalls MaryCalls



More concrete representation

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B    E     P(A|B,E)
0     0      0.001
0     1      0.29
1     0      0.94
1     1      0.95

A     P(J|A)
0     0.05
1     0.90

A    P(M|A)
0     0.01
1     0.70

“CPT”



Parameterizing the CPT

Size of CPT is exponential in number of 
parents.  Often use a simpler parameterization 
based on knowledge of how causes interact. 



Parameterizing the CPT

Size of CPT is exponential in number of 
parents.  Often use a simpler parameterization 
based on knowledge of how causes interact. 

• Logical OR: Independent deterministic causes
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Alarm

Earthquake

B    E     P(A|B,E)
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0     1      1
1     0      1
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Parameterizing the CPT

Size of CPT is exponential in number of 
parents.  Often use a simpler parameterization 
based on knowledge of how causes interact. 

• Noisy OR: Independent probabilistic causes

Burglary

Alarm

Earthquake

B    E     P(A|B,E)
0     0      0
0     1      wB
1     0      wE
1     1      wB +(1-wB )wE



Parameterizing the CPT

Size of CPT is exponential in number of 
parents.  Often use a simpler parameterization 
based on knowledge of how causes interact. 

• AND: cause + enabling condition

Burglary

Alarm

Electricity

B    E     P(A|B,E)
0     0      0
0     1      0
1     0      0
1     1      1 (or wB)



Parameterizing the CPT

Size of CPT is exponential in number of 
parents.  Often use a simpler parameterization 
based on knowledge of how causes interact. 

• Logistic: Independent probabilistic causes 
with varying strengths wi and a threshold θ

Child 1 upset

Parent upset

Child 2 upset
C1   C2     P(Pa|C1,C2)
0      0       
0      1      
1      0      
1      1      

[ ]
[ ]
[ ]
[ ])exp(1/1

)exp(1/1
)exp(1/1

)exp(1/1
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1



Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

A priori, no correlation between B and E:
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

A priori, no correlation between B and E:
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

A priori, no correlation between B and E:
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

A priori, no correlation between B and E:
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A=1 … 
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A=1 … 
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A=1 … … P(B|A=1) = 2/3
B and E are anti-correlated

),|1()1|,( EBAPAEBP =∝=



Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A=1, E=1 … … P(B|A=1) = 1/2
Back to P(B).

)1,|1()1,1|( ==∝== EBAPEABP
“Explaining away” or 
“Causal discounting”



Explaining away

• Depends on the functional form (the 
parameterization) of the CPT
– OR or Noisy-OR: Discounting
– AND: No Discounting 
– Logistic: Discounting or Augmenting 



• Observing rain, Wet becomes more active. 
• Observing grass wet, Rain and Sprinkler become 

more active.
• Observing grass wet and sprinkler, Rain cannot 

become less active.  No explaining away!   

• Excitatory links: Rain Wet, Sprinkler Wet

Spreading activation or recurrent 
neural networks

Rain Sprinkler

Grass Wet



Spreading activation or recurrent 
neural networks

Rain Sprinkler

Grass Wet

• Observing grass wet, Rain and Sprinkler become 
more active.

• Observing grass wet and sprinkler, Rain becomes 
less active: explaining away. 

• Excitatory links: Rain Wet, Sprinkler Wet
• Inhibitory link: Rain Sprinkler



Spreading activation or recurrent 
neural networks

Rain

• Each new variable requires more inhibitory 
connections.

• Interactions between variables are not causal.
• Not modular.

– Whether a connection exists depends on what other 
connections exist, in non-transparent ways.  

– Combinatorial explosion.

Sprinkler

Grass Wet

Burst pipe



Summary

Bayes nets, or directed graphical models, offer 
a powerful representation for large 
probability distributions:
– Ensure tractable storage, inference, and 

learning
– Capture causal structure in the world and 

canonical patterns of causal reasoning. 
– This combination is not a coincidence.
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