
Goodman’s problem
• Why do some hypotheses receive 

confirmation from examples but not others?
– “All piece of copper conduct electricity”: yes
– “All men in this room are third sons”: no

• Distinguishing lawlike hypotheses from 
accidental hypotheses is not easy: 
– “All emeralds are green”
– “All emeralds are grue”, where grue means “if 

observed before t, green; else, blue.” 



Responses to Goodman

• First instinct is a syntactic response:
– Hypotheses without arbitrary free 

parameters are more lawlike.
– Simpler (shorter) hypotheses are more 

lawlike. 



Syntactic levers for induction
• Which hypothesis is better supported by the evidence? 

– “All emeralds are green.”
– “All emeralds are green or less than 1 ft. in diameter.”
– But: “All emeralds are green and less than 1 ft. in diameter”? 

• Which curve is best supported by the data?
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Responses to Goodman
• Hypotheses without arbitrary free 

parameters are more lawlike.
• Simpler (shorter) hypotheses are more 

lawlike. 
• But “green” and “grue” are logically 

symmetric:
– To a Martian who sees grue and bleen, green  

just means “if observed before t, grue; else, 
bleen.” 



Responses to Goodman
• Hypotheses without arbitrary free 

parameters are more lawlike.
• Simpler (shorter) hypotheses are more 

lawlike. 
• But “green” and “grue” are logically 

symmetric.
• Lawlike is a semantic (not syntactic) notion, 

and depends on prior subjective knowledge 
(not strictly objective world structure). 



It’s not about time or 
photoreceptors

• Consider:
– All emeralds are crystaline.
– All emeralds are crysquid.

• Crysquid = “if under one foot in diameter, 
crystaline; else, liquid”. 

• Liqualine = “if under one foot in diameter, 
liquid; else, crystaline”. 

• Then crystaline = “if under one foot in 
diameter, crysquid; else, liqualine”. 



The origin of good hypotheses
• Nativism

– Plato, Kant
– Chomsky, Fodor

• Empiricism
– Strong: Watson, Skinner 
– Weak: Bruner, cognitive psychology, statistical 

machine learning
• Constructivism

– Goodman, Piaget, Carey, Gopnik
– AI threads…. 



Plato
• Meno: Where does our knowledge of 

abstract concepts (e.g., virtue, geometry) 
come from? 

• The puzzle: “A man cannot enquire about 
that which he does not know, for he does 
not know the very subject about which he 
is to enquire.”



Plato
• Meno: Where does our knowledge of 

abstract concepts (e.g., virtue, geometry) 
come from? 

• A theory: Learning as “recollection”. 
• The Talmud’s version:

“Before we are born, while in our mother's womb, the Almighty 
sends an angel to sit beside us and teach us all the wisdom we will 
ever need to know about living. Then, just before we are born, the 
angel taps us under the nose (forming the philtrum, the 
indentation that everyone has under their nose), and we forget 
everything the angel taught us.”



Plato meets Matlabtm

What is the relation between y and x?
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The legacy of Plato

• “A man cannot enquire about that which he 
does not know, for he does not know the 
very subject about which he is to enquire.”

• We can’t learn abstractions from data if in 
some sense we didn’t already know what to 
look for. 
– Chomsky’s “poverty of the stimulus” argument 

for the innateness of language. 
– Fodor’s argument for the innateness of all 

concepts.  



The origin of good hypotheses
• Nativism

– Plato, Kant
– Chomsky, Fodor

• Empiricists
– Strong: Watson, Skinner 
– Weak: Bruner, cognitive psychology, statistical 

machine learning
• Constructivists

– Goodman, Piaget, Carey, Gopnik
– AI threads….



Bruner, Jerome S., Jacqueline J. Goodnow, and George Austin. A Study in 
Thinking. Somerset, NJ: Transaction Publishers, 1986. ISBN: 0887386563.
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Hull. "Qualitative aspects of the evolution of concepts." Psychological Monograph
 28, no. 123 (1920).
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Fodor’s critique
• This isn’t really concept learning, it’s just belief 

fixation.  
– To learn the rule “striped and three borders”, the learner 

must already have the concepts “striped”, “three 
borders”, and “and”, and the capacity to put these 
components together. 

– In other words, the learner already has the concept, and 
is just forming a new belief about how to respond on 
this particular task.

• More generally, all inductive learning seems to 
require the constraints of a hypothesis space -- so 
the learner must begin life with all the concepts 
they will ever learn.  How depressing. 



Fodor’s critique
Raises major questions for cognitive 

development, machine learning, and AI:  
• Is it ever possible to learn truly new concepts, 

which were not part of your hypothesis space to 
begin with?

• What conceptual resources must be innate?
– Objects?
– First-order logic?
– Recursion?
– Causality?



The origin of good hypotheses
• Nativism

– Plato, Kant
– Chomsky, Fodor

• Empiricists
– Strong: Watson, Skinner 
– Weak: Bruner, cognitive psychology, statistical 

machine learning
• Constructivists

– Goodman, Piaget, Carey, Gopnik
– AI threads…. 



Goodman’s answer to Goodman
• More lawlike hypotheses are based on 

“entrenched” predicates: green is more entrenched 
than grue.

• How does a predicate become entrenched?  Is it 
simple statistics: how often the predicate has 
supported successful inductions in the past?

• Suppose grue means “If observed on Earth, green; 
if on Mars, blue.”  

• Entrenchment could come through experience, but 
could also derive from a causal theory.  Theory 
supported by experience seems best.



How do theories work?

• See this look?                     It’s called “chromium”.
• Here are some blickets: 

• Which hypothesis is more lawlike? 
– “All blickets are chromium” 
– “All blickets are chromirose”, where chromirose means 

“if observed before t, chromium; else rose-colored.”



How do theories work?
• Theories depend on abstract categories.

– E.g., chromium is a kind of color or material. 
– Emeralds are a kind of mineral. 

• Abstract categories depend on theories.
– E.g., atom, magnetic pole

• Theories support hypotheses for completely 
novel situations.

• Big open questions:
– What is a theory, formally?
– How are theories learned?



Inductive learning
as search 



Marr’s three levels

• Level 1: Computational theory
– What is the goal of the computation, and what is the 

logic by which it is carried out?

• Level 2: Representation and algorithm
– How is information represented and processed to 

achieve the computational goal?

• Level 3: Hardware implementation
– How is the computation realized in physical or 

biological hardware? 



• Level 1: Computational theory
– What is a concept?
– What does it mean to learn a concept successfully?
– What kinds of concepts can be learned?  Under what 

conditions?  From how much data? 
– What assumptions must be made for learning to 

succeed?

• Level 2: Representation and algorithm 
– How are objects and concepts represented?
– How much memory (space) and computation (time) 

does a learning algorithm require?
– Is the algorithm online or batch (serial or parallel)?
– What kinds of concepts are learned most easily (or most 

reliably) by a particular algorithm? 



Level 1: Computational Theory 
• What is a concept?

– A rule that divides the objects into two sets: positive 
instances and negative instances.  

• What does it mean to learn a concept successfully?
– Given N randomly chosen “training” examples (objects 

labeled positive or negative), and a space H of hypotheses 
(candidate rules), find a hypothesis h that is consistent 
with the training examples and that ….

– Identification in the limit: … is guaranteed to converge 
to the true rule if in H, in the limit that N goes to infinity.

– Probably Approximately Correct (PAC): …is likely to 
perform well on future examples, for a reasonable number 
of training examples N. May be possible even if the true 
rule is “unrealizable” (not in H).



Level 2: Representation and 
Algorithm 

• How are objects and concepts represented?
– E.g., Binary-feature worlds and conjunctive concepts 

Features
f1  f2  f3  f4  f5  f6

x1: 1  1  1  0  1  0
x2: 1  1  0  0  1  1
x3: 0  1  0  1  1  1
...

Objects

h1: *  1  *  *  1  *  = f2 AND f5
h2: 1  1  *  *  1  *  = f1 AND f2 AND f5
h3: 1  1  1  0  1  0  = f1 AND f2 AND f3 AND -f4 

AND f5 AND -f6

Concepts



Level 2: Representation and 
Algorithm 

• A learning algorithm: subset principle (a/k/a 
focussing, wholist, find-S)
– Start with the most specific conjunction (= first positive 

example) and drop features that are inconsistent with 
additional positive examples.

Examples Current hypothesis

f1  f2  f3  f4  f5  f6 Label

x1: 1  1  1  0  1  0    +

f1  f2  f3  f4  f5  f6

h1: 1  1  1  0  1  0
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Level 2: Representation and 
Algorithm 

• A learning algorithm: subset principle (a/k/a 
focussing, wholist, find-S)
– Start with the most specific conjunction (= first positive 

example) and drop features that are inconsistent with 
additional positive examples.
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Computational analysis
• Identification in the limit:

– Given N randomly chosen training examples 
and a space H of hypotheses, find a hypothesis 
h that is consistent with the training examples 
and that is guaranteed to converge to the true 
rule if it is in H, in the limit              .

– With k features, can make at most k mistakes on 
positive examples (and none on negatives).

– Assuming that every example has some 
probability of occurring, success is certain.

– Note that only positive examples are required.

∞→N



Relevance to human learning
• Bruner, Goodnow and Austin

– Most people use this strategy in a transparent 
conjunctive learning task. 

Image removed due to copyright considerations.



Relevance to human learning
• Berwick

– Explains development of conceptual hierarchies 
and syntactic rules.

5-year-old’s 
ontology

7-year-old’s 
ontology

Overly general
ontology

Keil, Frank C. Concepts, Kinds, and Cognitive Development. Cambridge, MA: MIT Press, 1989.______________________________________

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8180


Relevance to human learning
• Berwick

– Explains development of conceptual hierarchies 
and syntactic rules.

E.g., learning which verbs have optional arguments.
John ate the ice cream cone.
John ate.
John took the ice cream cone.
*John took.

Subset strategy: assume that any verb appearing with an 
argument must take an argument, until it has been 
observed without an argument.



Computational analysis
• Can learning succeed under weaker 

conditions?  PAC.
– The true concept is not in the hypothesis space.
– We are not willing to wait for infinite 

examples, but we can live with a low error rate.

• What can we say about more complex cases 
of learning?
– Richer hypothesis spaces?
– More powerful learning algorithms?



Probably Approximately Correct (PAC)

• The intuition: Want to be confident that a 
hypothesis which looks good on the training 
examples (i.e., appears to have zero error rate) in 
fact has a low true error rate (ε), and thus will 
generalize well on the test instances. 

• Note we do not require that the true rule is in the 
hypothesis space, or that if it is, we must find it. 
We are willing to live with a low but nonzero error 
rate, as long as we can be pretty sure that it is low.



Probably Approximately Correct (PAC)
• Assumption of “uniformity of nature”: 

– Training and test instances drawn from some 
fixed probability distribution on the space X.

Target concept h*
Hypothesis h

Error region h⊕h* = union - intersection
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Probably Approximately Correct (PAC)
• Assumption of “uniformity of nature”: 

– Training and test instances drawn from some 
fixed probability distribution on the space X.

Target concept h*
Hypothesis h

Error rate ε = probability of drawing from these regions 
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Probably Approximately Correct (PAC)
• The intuition: Want to be confident that a 

hypothesis which looks good on the training 
examples (i.e., appears to have zero error rate) in 
fact has a low true error rate (ε), and thus will 
generalize well on the test instances. 

• PAC theorem: With probability 1-δ, a hypothesis 
consistent with N training examples will have true 
error rate at most ε whenever

.
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Probably Approximately Correct (PAC)
• PAC theorem: With probability 1-δ, a hypothesis 

consistent with N training examples will have true 
error rate at most ε whenever

• How does N, the amount of data required for good 
generalization, change with problem parameters?
– As allowable error (ε) decreases, N increases.
– As desired confidence (1-δ) increases, N increases.
– As the size of the hypothesis space (log |H|) increases, 

N increases.  

.
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Implications for what makes a good 
hypothesis space or inductive bias. 



Probably Approximately Correct (PAC)
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Why does N depend on number of hypotheses, |H|? 
– Consider the set of “bad” hypotheses, Hbad: hypotheses 

with true error rate greater than or equal to ε.
– We want to be confident that a hypothesis which looks 

good on N examples is not actually in Hbad .
– Each example on average rules out at least a fraction ε 

of the hypotheses in Hbad .  The bigger Hbad is, the more 
examples we need to see to be confident that all bad 
hypotheses have been eliminated. 

– The learner doesn’t know how big Hbad is, but can use 
|H| as an upper bound on |Hbad|.



Demo?



PAC analyses of other 
hypothesis spaces

• Single features
• Conjunctions
• Disjunctions
• Conjunctions plus k exceptions
• Disjunction of k conjunctive concepts 
• All logically possible Boolean concepts



• Single features:

• Conjunctions:

• Disjunctions:

• Conjunctions plus k exceptions:

• Disjunction of k conjunctive concepts: 

• All logically possible Boolean concepts:

h1: f2
h2: f5

h1: f2 OR f5
h2: f1 OR f2 OR f5

h1: (f1 AND f2) OR (0 1 0 1 1 0)
h2: (f1 AND f2 AND f5) OR (0 1 0 1 1 0) OR (1 1 0 0 0 0)

h1: (f1 AND f2 AND f5) OR (f1 AND f4)
h2: (f1 AND f2) OR (f1 AND f4) OR (f3)

h1: f2 AND f5
h2: f1 AND f2 AND f5

h1: (1 1 1 0 0 0), (1 1 1 0 0 1), (1 1 1 0 1 0), ...
h2: (0 1 0 1 1 0), (1 1 0 0 0 0), (1 0 0 1 1 1), ...



• Single features:

• Conjunctions:

• Disjunctions:

• Conjunctions plus k exceptions:

• Disjunction of k conjunctive concepts: 

• All logically possible Boolean concepts:

h1: f2
h2: f5

h1: f2 OR f5
h2: f1 OR f2 OR f5

h1: (f1 AND f2) OR (0 1 0 1 1 0)
h2: (f1 AND f2 AND f5) OR (0 1 0 1 1 0) OR (1 1 0 0 0 0)

h1: (f1 AND f2 AND f5) OR (f1 AND f4)
h2: (f1 AND f2) OR (f1 AND f4) OR (f3)

h1: f2 AND f5
h2: f1 AND f2 AND f5

h1: (1 1 1 0 0 0), (1 1 1 0 0 1), (1 1 1 0 1 0), ...
h2: (0 1 0 1 1 0), (1 1 0 0 0 0), (1 0 0 1 1 1), ...



• Single features: 
log |H| = log k (k = # features)

• Conjunctions: 
log |H| = k

• Disjunctions: 
log |H| = k

• Conjunctions plus m exceptions: 
log |H| ~ km

• Disjunction of m conjunctive concepts: 
log |H| ~ km

• All logically possible Boolean concepts:
log |H| = 2^k = number of objects in world.
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The role of inductive bias
• Inductive bias = constraints on hypotheses. 
• Learning with no bias (i.e., H = all possible 

Boolean concepts) is impossible.
– PAC result
– A simpler argument by induction.



The role of inductive bias
• Inductive bias = constraints on hypotheses. 

• Relation to Ockham’s razor:
– “Given two hypotheses that are both consistent 

with the data, choose the simpler one.”
– log |H| = number of bits needed to specify each 

hypothesis h in H.  Simpler hypotheses have 
fewer alternatives, and shorter descriptions.

– E.g. Avoid disjunctions unless necessary:
“All emeralds are green and less than 1 ft. in 

diameter” vs. “All emeralds are green and less than 
1 ft. in diameter, or made of cheese”. 
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What this doesn’t tell us
• Why conjunctions easier than disjunctions?

– C.f., Why is “all emeralds are green and less 
than 1 ft. in diameter” better than “all emeralds 
are green or less than 1 ft. in diameter”?

– What are concepts useful for in the real world?
– What is structure of natural categories?  



What this doesn’t tell us
• Why conjunctions easier than disjunctions?
• How we choose the appropriate generality 

of a concept, given one or a few examples?
– Subset principle says to choose a hypothesis 

that is as small as possible.
– Occam’s razor says to choose a hypothesis that 

is as simple as possible.
– But these are often in conflict, e.g. with 

conjunctions.  People usually choose something 
in between, particularly with just one example.  
Consider word learning …. 



What this doesn’t tell us
• Why conjunctions easier than disjunctions?
• How we choose the appropriate generality 

of a concept?
• How we should (or do) handle uncertainty? 

– How confident that we have the correct concept?  
– When to stop learning?  
– What would the best example to look at next?
– What about noise (so that we cannot just look for a 

consistent hypothesis)?

– Should we maintain multiple hypotheses?  How?



What this doesn’t tell us
Compare PAC bounds with typical 

performance in Bruner’s experiments or the 
real world. 
– E.g., need > 200 examples to have 95% 

confidence that error is < 10%
– Bruner experiments: 5-7 examples
– Children learning words:

Images removed due to copyright considerations.



Other learning algorithms
• Current-best-hypothesis search

• Version spaces: 

Image removed due to copyright considerations.

Image removed due to copyright considerations.



Summary: Inductive learning as search
• Rigorous analyses of learnability.

– Explains when and why learning can work.
– Shows clearly the need for inductive bias and gives a 

formal basis for Occam’s razor. 

• Many open questions for computational models of 
human learning, and building more human-like 
machine learning systems.
– Where do the hypothesis spaces come from? Why are 

some kinds of concepts more natural than others?  
– How do we handle uncertainty in learning? 
– How do we learn quickly and reliably with very flexible 

hypothesis spaces? 
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