
Summary
• Structured representations are important

– Abstract 
– Recursive
– Generative

• New primitive concepts can be learned
– Learning the most parsimonious theory 

• How to combine structured representations and 
statistical inference?
– Statistical parsing in language
– Statistical grammar induction
– Probabilistic inferences about kin relations.
– Statistical learning of relational concepts and theories. 



Outline for today

• The debate about structure in people’s 
mental representations of concepts
– Hierarchies or hidden units?
– Logical relations or hidden units? 
– Definitions or prototypes?

• Probabilistic inference



Semantic networks
(Quillian, 1968)

Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic



Why semantic networks?

• Economical encoding of information.
(a big deal in 1968.)

• Supports generalization.
– If you learn that a draxel is a bird, you can 

expect that a draxel has wings, can fly, and has 
feathers.   



Generalization in a semantic 
network

Draxel

Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic



Inferring mental structure through 
reaction times  (Collins & Quillian, 1969)

Collins, A. M., and M. R. Quillian. "Retrieval Time from Semantic Memory." 
Journal of Verbal Learning and Verbal Behavior 8 (1969): 240-248.

General finding: the more of the hierarchy a 
relation spans, the longer it takes to verify. 

Image removed due to copyright considerations. Please see:



Reaction time data

Collins, A. M., and M. R. Quillian. "Retrieval Time from Semantic Memory." 
Journal of Verbal Learning and Verbal Behavior 8 (1969): 240-248.
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“Cleaned up” reaction time data

Collins, A. M., and M. R. Quillian. "Retrieval Time from Semantic Memory." 
Journal of Verbal Learning and Verbal Behavior 8 (1969): 240-248.
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Reaction time data

Collins, A. M., and M. R. Quillian. "Retrieval Time from Semantic Memory." 
Journal of Verbal Learning and Verbal Behavior 8 (1969): 240-248.
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Problems 

• Typicality effects.
– “robin is a bird” faster than “chicken is a bird”.  

• Violations of hierarchy for atypical items.
– “chicken is an animal” faster than “chicken is a 

bird.”

• Rosch: Graded prototype representations 
more important than all-or-none “is a” 
relations.



Problems 

• Typicality effects.
– “robin is a bird” faster than “chicken is a bird”.  

• Violations of hierarchy for atypical items.
– “chicken is an animal” faster than “chicken is a 

bird.”

• But do these problems require us to give up 
on “is a” hierarchies? 



Possible solutions 

• We have multiple trees, a default and some 
alternative hypotheses.  
– In default tree: chicken falls under bird.
– In alternative tree: chicken falls under animal.



Chicken

Chicken

Default

Alternative

Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic



Possible solutions 

• We have multiple trees, a default and some 
alternative hypotheses.  
– In default tree: chicken falls under bird.
– In alternative tree: chicken falls under animal.

• The word “bird” maps onto two nodes, one 
referring just to typical birds and the other 
to all birds.



Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic



Robin

Sparrow Chicken

Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic
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Information Processing. Edited by M. Minsky. Cambridge, MA: MIT Press,1968, pp. 216-270.
Courtesy of the MIT Press. Used with permission.

Figure of semantic trees from Quillian (1968). Quillian, M. R. "Semantic Memory." In Semantic



Possible solutions 

• We have multiple trees, a default and some 
alternative hypotheses.  
– In default tree: chicken falls under bird.
– In alternative tree: chicken falls under animal.

• The word “bird” maps onto two nodes, one 
referring just to typical birds and the other 
to all birds.

• Deny that prototype effects are diagnostic 
of core representations.



Armstrong, Gleitman & Gleitman

Armstrong, S. L., L. R. Gleitman, and H. Gleitman. “What Some Concepts might 
not be.”

 
Cognition 13, no. 3 (May 1983): 263-308.
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Armstrong, Gleitman & Gleitman

• Prototype ratings and reaction time effects for 
clearly definitional concepts shows that these data 
are not diagnostic of conceptual structure. 

Armstrong, S. L., L. R. Gleitman, and H. Gleitman. “What Some Concepts might 
not be.”

 
Cognition 13, no. 3 (May 1983): 263-308.
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Why not give up on a definitional 
core for concepts?

• Reasoning, e.g., “Consider a new person, Boris.” 
– Is the mother of Boris’s father his grandmother?
– Is the mother of Boris’s sister his mother?
– Is Boris’s uncle his grandfather?
– Is the son of Boris’s sister his son?

• Compositionality in concepts and language
– e.g., Greatgrandmother = mother of a grandparent.
– “Colorless green idea”
– “Big”



Why not give up on a definitional 
core for concepts?

• Even without definitions, need a distinction 
between typicality and degree of membership.
– At some level we know for certain that 

chickens are birds.  (Consider a bet....)
– Some categories really are graded in their 

membership:
green or blue?

cup or bowl?

Images removed due to 
copyright considerations.



Other problems for all-or-none 
semantic relations

• Graded generalization
– Which is a stronger inference? 

– More of a problem, as generalization is the 
main function that “is a” hierarchies are 
supposed to fulfill. 

• Others?

Chickens have sesamoid bones.

All birds have sesamoid bones.

Canaries have sesamoid bones.

All birds have sesamoid bones.



An alternative architecture

• Semantic networks are symbolic:
– encode discrete, localized bits of knowledge.

• Neural networks are subsymbolic:
– inspired by long-term memory in the brain 

(synaptic plasticity).
– graded representations that can approximate 

symbolic models, e.g., “is a” hierarchies, while 
still capturing prototypicality.



Image removed due to copyright considerations.



Training set

Image removed due to copyright considerations.



Learned distributed 
representation

Image removed due to copyright considerations.



Generalization test

• Train on one fact for new object:
– Draxel ISA bird

• Network then believes that a Draxel has other 
properties in common to most other birds . . . 
– can fly, has wings, has feathers. 

• . . . but not properties distinctive to individual 
birds (e.g., is red or is yellow). 



Hierarchical structure in 
conceptual development

Keil. "The Development of the Young Child's Ability to Anticipate the Outcomes of 
Simple Causal Events." Child Development 50 (1979): 455-462.
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Keil. "The Development of the Young Child's Ability to Anticipate the Outcomes of 
Simple Causal Events." Child Development 50 (1979): 455-462.
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Development of hierarchy in 
network

Image removed due to copyright considerations.



Problems
• Collapses typicality and graded membership.

– Chicken activates the Bird unit less than Canary 
does. 

– But recall: 
• At some level we know for certain that chickens are 

birds.
• Some categories really are graded in their membership:

Image removed due to 
copyright considerations. cup or bowl?



Problems
• Requires special care in training. 

– Lots of training data, must be randomly 
interleaved throughout training.

– Potential for “catastrophic interference” when 
learning a new fact, without freezing weights.

– As knowledge base grows, need to add hidden 
units (to preserve bottleneck ratio for good 
generalization).

– When learning a novel proposition, “blickets may 
queem”, some controller needs to specify that 
blicket initializes a new input node, queem a new 
output node, and may a new relation ndoe. 



Problems
• Doesn't know certain obvious things unless 

explicitly trained:
– “A bird is a bird”: we don't have to check that 

fact the same way we check “a bird is an animal”.
– “A blicket is a blicket”. 
– If these are living things, 

they are either plants or animals.  If animal, they 
are some kind of animal -- not “just” an animal. 
(i.e., Must initialize an unlabeled node under 
animal, which is then a candidate word meaning.)   

Image removed due to
copyright considerations.



Fodor and Pylyshyn: What’s 
missing from connectionism?

• Systematicity
– The thoughts a cognitive system is capable of 

are not a random collection (like the phrases in 
a tourist’s foreign language-phrasebook) but a 
systematic set (like the sentences that can be 
produced by a fluent speaker of a language). 

– If it can think Sandy loves Kim, then it can 
entertain the thought Kim loves Sandy.



Learning family relationships
(Hinton, 1986)

• Tree structure generates relations: 

Hinton, G. E. “Learning Distributed Representations of Concepts.” Proc. Ann. 
Conf. of the Cognitive Science Society 1 (1986).
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Learning family relationships
(Hinton, 1986)

• Network architecture: 

Hinton, G. E. “Learning Distributed Representations of Concepts.” Proc. Ann. 
Conf. of the Cognitive Science Society 1 (1986).
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Learning family relationships
(Hinton, 1986)

• 112 possible facts of the form: 
<person1, relation, person2>
<Christopher, father-of, Victoria>,
<Colin, son-of, Victoria>,
<Jennifer, aunt-of, Colin> . . . 

• Trained on 108 examples, network usually  
generalizes well to the other 4.  
– Doesn’t work with less training.  



Learning family relationships
(Hinton, 1986)

• Does this really count as systematicity?
– With so much training required, and so little 

generalization ability?
– Every time you learn about a new person, still 

need an external controller to add that person to 
both the input layer and output layer.  That’s 
the real source of systematicity. 



Linear Relational Embedding

Image removed due to copyright considerations.

• Minor improvement, from 4 to 8 or 12 
generalization trials. 



Learning family relationships
(Hinton, 1986)

• Problem: Consider a new person, Boris. 
– Is the mother of Boris’s father his grandmother?
– Is the mother of Boris’s sister his mother?
– Is Boris’s uncle his grandfather?
– Is the son of Boris’s sister his son? 



A Big open question

• How to integrate abstract knowledge with 
probabilistic (or typicality-based) reasoning?  
– Is the son of Boris’s sister his son?  (Note: Boris 

and his family were stranded on a desert island 
when he was a young boy.) 

– Is Boris’s son his wife’s son?
– Boris has five aunts.  How many cousins does he 

have?  



A challenge for either approach

• “Because Sarah loves him, John hates Bill.”  
– Who does “him” refer to?
– How to represent this thought?



• Two hypotheses:
cause(loves(Sarah,Bill), hates(John,Bill))
cause(loves(Sarah,John), hates(John,Bill))

• Why prefer the first?  
– Inference rules: 

implies(and(cause(x,y), cause(y,z)), cause(x,z)) 
implies(cause(and(x,y),z), cause(x,z))

– Beliefs with high probability:
cause(and(loves(x,y), loves(y,z), not(loves(y,x))), jealous(x,z))
cause(jealous(x,y), hates(x,y))

– First hypothesis would be true if:
loves(John,Sarah)
not(loves(Sarah,John))

– No such simple explanation for second hypothesis.



So...
… why do we keep having this debate: 

rules/symbols vs. prototypes/connections?

Other cases: 
– Language acquisition and processing, e.g. past tense
– Schemas and scripts for events and actions
– Visual object recognition and scene perception 



So...
… why do we keep having this debate: 

rules/symbols vs. prototypes/connections?

… and why do none of the standard 
approaches seem to be satisfying?



So...
The real problem: a spurious contest between 

logic and probability.  
– Neither logic nor probability on its own is 

sufficient to account for human cognition: 
• Generativity
• Systematicity
• Recursion and abstraction
• Flexibility
• Effective under great uncertainty (e.g., sparse data)

– What we really need is to understand how logic 
and probability can work together.



So...
The real problem: a spurious contest between 

logic and probability.  
– A confusion between knowledge 

representations and inference processes:
Gradedness or fuzziness doesn’t necessarily mean that 

the knowledge representations lack structure or rules 
-- merely that the inference processes incorporate 
uncertainty. 

– Probabilistic inference over structured 
representations is what we need.
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