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Notation


( )p x  - probability density function (continuous variable) 

( )P x  - probability mass function (discrete variable) 

( , ,  , | ,  , , )  
densityof these functionof these 

p a b c  d e f  g h����� ��� �� - conditional density 

1 2 1 2( ) ( , ,... ) ...n nf d f x  x x dx dx dx”� �x x  

1 2 1 2... ( , ,... ) ...n nf x  x x dx dx dx” � � �  

x - scalar variable x - vector variable, sometimes x when clear 

1 

2 

A B  
w 

w 
> - if A > B then the answer is ω1, otherwise ω2 
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Machine Learning


Learning machine: 

ŷ f= x w  

G S 

LM 

yx 

p(x) 
p(y|x) 

f(x, w) 

(  , )  

G – Generator, or Nature: implements 
S – Supervisor: implements 
LM - Learning Machine: implements 
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Loss and Risk


( , ( , )) 

R p( ) ( , ( , , )w x x= z 

Goal of learning is to find f(x,w*) such that R(w*) is minimal. 

deviations from true y 

much penalty we get on 
average 

L y f x w 

L y f y d dy )) ( x w 

- Loss Function – how much penalty we get for 

- Expected Risk – how 
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Quick Illustration


From basic probability: ( , ) = 

( , ( ,= � �  

If no noise: ( ,y g xd= 

( ,= � 

What does it mean? 

( | )  ( )  p x y  p y  x p x  

(  )  ))  (  , )  R w  L y f  x w  p x y dxdy 

( |  )  (  )) p y  x  

(  )  (  (  ),  ))  ( )  R w  L g x  f  x w  p x dx 
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Illustration cont.


( ,= � 
So, 

x 

y 

(  )  (  (  ),  ))  ( )  R w  L g x  f  x w  p x dx 
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Example


1]x ̨ -

{ }0,1y = 

Classification: 

<= p(x, y) 

x… … 

0y = 1y = 

0 1 

1 

0 
Measurements: 

Labels: 

Find f(x,w*) such that R(w*) is minimal. 

y 

x 

[  1,  
-1 
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Example


( , ( , 1 ( ( , ))d= - -

[ ] 
1 

0 

1 ( ( , ( , ) 
Y 

Yd 
= 

= - - =�� 

1 for every mistake 

( , ) =Let’s choose 

(superimposed) 

))  L y f  x a  y  H  x a  

(  )  ))  R a  H  x a  p x y  Y  dx 

- +

(  , )  f  x a  H  x a  - step function 
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Learning in Reality


R p( ) ( , ( , , )w x x= z 

1 

1
( ) ( ) ( , ( ,  )) 

n 

e i i 
i 

R R 
n = 

‹ = �w w x w  

Approximate: estimate risk functional by averaging loss over 
observed (training) data. 

What we want: 

What we get: 

Replace expected risk with empirical risk 

Fundamental problem: where do we get p(x, y)??? 

L y f y d dy )) ( x w 

L  y f  
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What We Call Learning


Taxonomies of machine learning: 
• 

Unsupervised, Reinforcement 
• 

estimation 
• 

quantization and density estimation 

by source of evaluation – Supervised, Transductive, 

by inductive principle – ERM, SRM, MDL, Bayesian 

by objective – classification, regression, vector 
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Taxonomy by Evaluation Source


• Supervised (classification, regression) 
y 

• Transductive 

• Unsupervised (clustering, density estimation) 
y 

• Reinforcement 

was correct… 

Evaluation source - immediate error vector, that is, we get to see the true 

Evaluation source – immediate error vector for SOME of the data 

Evaluation source - internal metric – we don’t get to see true 

Evaluation source - environment – we get to see some scalar value 
(possibly delayed) that in some way related to whether the label we chose 
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Taxonomy by Inductive Principle


• Empirical Risk Minimization (ERM) 

• Structural Risk Minimization (SRM) 

• Minimum Description Length 

• Bayesian Estimation 

min ( , ( , ( , ) 
w 

1 

1n 
f fi i 

i 

n 

i 
= 
� ˛` 

, 1 

1 2 

1 
( , ( ,  

( ,  ) , , 

n 

i i 
h i 

i k k 

f h 
n 

f k h  
= 

+ F  

� � � 

� 
w 

x w  

x w  … … 

P P p d 
n 

f Pi i 
i 

n 

( | ) ( | | ) min( ( , ( , )) ( ( )))x x wC C F= � +z � 
= 

q q q 
1 

1 

� � �( , ) ( | ) ( ) min( ( , ( , )) ( ))H 
n 

fi i 
i 

n 

= + � + 
= 
� 

w 
w 

1 

1 

F 

)), x w x w L y 

min(  ))  (  )),     L  y  

˛ `  ̀  � `  � `  

L y ) ( x w 

D H D H L y x w 

“complexity” 
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Taxonomy by Learning Objective


• Classification 

• Regression 

• Density Estimation 

• Clustering/Vector Quantization 

L y f y f( , ( , )) ( , ( , ))x w x w= -1 d 

( , ( , )) ( ( , ))= - 2 

L f f( ( , )) log( ( , ))x w x w= -

L f f f( ( , )) ( ( , ( , ))x w x x w x x w= - � -

L y f y f x w x w 

)) ( 
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The Lay of the Land


( ) 1 

1
( ) ( , ( ,  ) 

n 

i i 
f or i 

f 
n = 

= + F� 
w 

w x w  

Classification 

Regression 

Density Estimation 

Vector Quantization/Clustering 

ERM 

SRM 

MDL 

Bayesian 

Regularization 

Supervised 

Transductive 

Unsupervised 

Reinforcement 

find  arg  min(  ))  or  L  y f  
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Class Priors


w 
1 

C 
i i = 

= 

( )P w - Prior probability Shorthand ( ) ( )i iP Pw w w” = 

1 

( ) 1  
C 

i 
i 

P w 
= 

=� 

Poor man’s decision rule: 

Decide 1w if 1 2( ) ( )P Pw w> otherwise 2w 

If x is in region A, decide a, if x is in region B, decide b… 

- state of nature { }w  w  

Making a decision about observation x is finding a rule that says: 
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Class-Conditional Density


p x  w 

( | ) 1i dxw 
¥ 

-¥ 

=� 

x given that the nature is in the statep x  w w 

How do we decide which 
class x came from? 

Deciding on this is not fair ? 

(  | )  - class-conditional density function 

p  x  

- density for (  | )  
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Joint Density


This relates to the measurement 
probabilistically, we need a function! 

( , ) ( | ) ( )Pw w w= 

2( )  0.8P w = 1( )  0.2P w = 

p  x  p  x  - joint density function 

Good – It is fair 

Bad – not very convenient. 

Fall 2004 Pattern Recognition for Vision 



We want a probability of ω for each value of x: 

( , ) ( | (P P x p xw w w w= = �Note that 

( | ) ( )
( | )  

( )  
P

P x 
p x  
w w 

w� = 

posterior 

likelihood prior 

evidence 

Continuum of binary distributions 

( | )P xw 

Bayes Rule and Posterior 

) (  )  | )  ( )  p  x  p  x  

p  x  
Bayes rule 
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Marginalization


1 1 

( , ) ( | 
C C 

i i i 
i i 

Pw w w 
= = 

= =� � 

= � - marginalization 

Or, more generally: 

( | ) ( )
( | )  

( )  
P

P x 
p x  
w w 

w = 

What is p(x)? 

Bayes Rule: how to convert prior to posterior by using measurements: 

(  )  )  ( )  p  x  p  x  p  x  

(  )  (  , )  p  x  p x y  dy 

p  x  
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Making Decisions


x 

With posteriors we can compare class probabilities 

( )| )ip xw w= 

Intuitively: 

What is the probability of error? 

2 1 

1 2 

( | ) if we choose
( | )  

( | ) if we choose 

p x 

p x 

w w 
w w 

� 
= � 

� 

( ) ( , ) (= =� � 

arg  max (  

p  error x  

| )  ( )  P  error  P  error  x  dx  P  error  x p x  dx 
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Errors


T* 

R1 R2 

1 2 2 1( , ) ( , )R w w= ˛ + ˛ 

How bad is a decision threshold? 

Recall that ( ) ( )  
a A  

A 
˛ 

˛ = �� 

1 2 

2 1( , ) 
x R  

dx dxw w 
˛ ˛ 

= + =� � 

1 2 

2 2 1 1( | ) ( | 
x R  

P dx P dxw w w w 
˛ ˛ 

= +� � 

(  )  P e  P x  P x R  

P a  p a da 

(  )  (  , )  
x  R  

P e  p x  p x  

)  (  )  ( )  
x  R  

p x  p x  
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Bayes Decision Rule


( ) (= �To minimize 

we need to make P(error|x) as small as possible for all x 

1 1 2 2Decide if  ( | ) ( |P x P xw w w w> 

� 
[ ] [ ]( ) ( | ) ( )x 

w 
= � 

[ ]1 2| ( | ) ( )P x P xw w= � 

� 

| )  ( )  P  error  P  error  x p x  dx 

);  otherwise 

Bayes decision rule: 

min  min  P  error  P  error  p x  dx 

min (  ),  p x  dx Bayes error 

Fall 2004 Pattern Recognition for Vision 



Bayes Decision Rule


R1 – region where we always choose ω1 

R2 – region where we always choose ω2 

For Bayes decision rule (back to the 1st example): 
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Loss Function


{ }1 2, ,..., cw classes 

{ }1 2, ,..., aa actions 

( | )i jL a w  - Loss function, penalty sustained for taking 
an action αi when the state of nature is ωj 

For dx ̨ R conditional risk for taking an action αi in ωj is the 

expected (average) loss for classifying ONE x: 

1 

( | ) ( | | )  
c 

i i j j 
j 

R x L P xa w 
= 

= � 

We make this up 

w w  - set of 

a a  - set of 

)  (  a w  
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Bayes Risk


1 

( ( | | ) ( )  
c 

i i j j 
j 

R R L P xa w 
= 

Ø ø 
= = Œ œ 

º ß 
�� � 

We will see a lot of x 

1 

( | , )  
c 

i j j 
j 

L p x dxw 
= 

Ø ø 
= Œ œ 

º ß 
�� 

This is exactly the expression for expected risk from before 

Similarly to the earlier argument about P(error): 

[ ] [ ] *| ) ( )iR R xa= =� -

| )  (  )  )  (  x p  x  dx  p x  dx a w  

–es. To see how well we do, we average again: 

)  (  a w  

min  min (  p x  dx R  Bayes risk 
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Quick Summary


( | )i jL a w  

|( | ) ( | )i x i jR x E Lwa a wØ ø= º ß 

[ ]( | )x iR E R xa= 

[ ]* minR R= 

- loss 

- conditional risk (expected loss) 

- total risk (expected cond. risk) 

- Bayes risk (minimum risk) 
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Minimum Risk Classification


ia ωi 

Two classes and a simple action: 

Then: 

1 1 2 

2 1 2 

( | ) ( | ) ( | )  

( | ) ( | ) ( | )  

R x x x 

R x x x 

a w w 
a w w 

= +� 
� = +� 

( | )ij i jl L a w= 

1 

2 
1 2( | ) ( | )R x R x 

w 

w 
a a< 

1 0.2 
3 0

L 
-Ø ø 

= Œ œ
º ß 

1 2{ , }w w w= 

- decide to choose 

11  12  

21  22  

l P  l P  

l P  l P  

Obvious decision – decide in favor of the class with minimal risk: 
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Likelihood Ratio Test


1 

2 
1 2( | )  ( | )l l P x l l P x 

w 

w 
w w- > - � 

Rewriting R(αi|x

1 

2 
1 1 2 2( ) (  | ) ( ) (  | ) ( )l l P l l P 

w 

w 
w w w w- > - � 

1 

2 

1 2 

2 1 

( | ) ( 
( | ) ( 

l l P  
l l P  

w 

w 

w w 
w w 

-
> 

-

Likelihood Ratio Test 

21  11  12  22  )  (  )  (  

)’s: 

21  11  12  22  )  (  p  x  p  x  

12  22  

21  11  

)  ( )  
)  ( )  

p  x  
p  x  

“Class model” “Class prior” 
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LRT Example


Should you run the red light? 

• You are driving to Blockbuster’s to return a video due today 
• It is 5 min to midnight 
• You hit a red light 
• You see a car that you 60% sure looks like a police car 
• Traffic fine is $5 AND you are late 
• Blockbuster’s fine is $10 
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Minimum Risk


15 0  
10 10 

L 
� � 

= � �
Ł ł 

run 

not run 

police not police 

$15 $0 

$10 $10 

You pay 

11 12 

21 22 

( | ) ( | ) ( | ) $9 

( | ) ( | ) ( | ) $10 

R run x l P  police x l P  police x  

R wait x l P  police x l P  police x  

� = + =�
� 

= + =��

( | ) 0.6P police x  = ( | ) 0.4P police x  = 

The risk is higher if you wait 
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LRT Way


Decision threshold 

WAITOK 

1 

2 

1 2 

2 1 

( | ) ( 
( | ) ( 

l l P  
l l P  

w 

w 

w w 
w w 

-
> 

-

Let’s say we have this “policeness” feature 

12  22  

21  11  

)  ( )  
)  ( )  

p x  
p x  
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LRT Example


Threshold is dependent on priors 

WAITOKWAITOK 

1 

2 

1 2 

2 1 

( | ) ( 
( | ) ( 

l l P  
l l P  

w 

w 

w w 
w w 

-
> 

-
12  22  

21  11  

)  ( )  
)  ( )  

p x  
p x  
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LRT Example


60 
10

L 
-� � 

= � �
Ł ł10

L 
� � 

= � �
Ł ł 

WAIT 

OK OKWAITOK 

Threshold is dependent on loss 

1 

2 

1 2 

2 1 

( | ) ( 
( | ) ( 

l l P  
l l P  

w 

w 

w w 
w w 

-
> 

-

15  
10  

15 0  
10  

12  22  

21  11  

)  ( )  
)  ( )  

p x  
p x  

Fall 2004 Pattern Recognition for Vision 



Minimum Error Rate Classification


Let‘s simplify the Min. Risk classification: 
0 1 1  
1 1 
1 1 0  

L 
� � 
� �= � �
� �
Ł ł 

� 

Then the conditional risk becomes: 

1 

( | ) ( | | )  
c 

i i j j 
j 

R x L P xa a w w 
= 

= � 
( | ) 1 ( | )j i 

j i  

P x P xw w 
" „  

= = -� 

- loss, just counts errors 

So, ωi having the highest value of the posterior minimizes the risk: 

( | ) ( | )  
i 

i jP x P x j i  
w 

w w> " „  

)  (  

zero-one 

- good ol’ Bayes decision rule 
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Minimax Criterion


[ ] 
1 

1 2( | ) ( | )  
R 

R xw w= +� 
[ ] 

2 

1 2( | ) ( | )  
R 

xw w+ +� 
After some algebra: 

1 

1 2 1( ) ( | ) ( ) ( )  
R 

l l l d f Tw w w= + - +� 

f(T) is 0. 

independent of priors. 

Is there a decision rule such that the risk is insensitive to priors? 

11  12  l  P  l  P  x  dx 

21  22  l  P  l  P  x  dx 

22  12  22  (  (  ))  R P  p x  x  P  

Minimax risk 
Goal – find the decision boundary T, such that 

At the boundary for which the minimum risk is maximal the risk is 
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Messy Illustration of the Minimax Solution


1( )P w
10 

1 ))R P w 

: = 

1( ) ( )mmR P f Tw+ 

: „ 

1( ) ( )mmR P f Tw+(  (  

(  ) 0  T  f T  

Bayes risk is concave down 

(  ) 0  T  f T  

-cannot be smaller than Bayes risk 

Worst possible Bayes risk is independent of priors 
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Discriminant Functions and Decision Surfaces


1 2{ nC g x= 

( ): ( )i ii g xw = 

( | )i iP xw= 

( | )i iR xa= -

( | ) ( )i i ip x Pw w= + 

Discriminant functions conveniently represent classifiers: 

(  ),  (  ),...  (  )} g x g  x  

arg  max  

Eg: 

(  )  g x  

(  )  g x  

(  )  ln  ln  g x  

Discriminants DO NOT have to relate to probabilities. 
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Discriminant for Binary Classification


1 2 ( )g x= -

i sign g xw = 

1 2( | ) ( | )P x P xw w= -

1 1 

2 2 

( | ) ( )
ln 

( | ) ( )  
P 

g x  
P 

w w 
w w 

= + 

For two-class problem: 

(  )  (  )  g x  g  x  

Then (assuming that classes are encoded as -1 and +1): 

( (  )) 

Eg: (  )  g x  

(  )  ln  
p x  
p x  
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Boundary for Two Normal Distributions


( )11 ( ) ( )
2 

/ 2 1 /2  

1 
) | | 

T 
i i ix x 

i d 
i 

e 
m m 

w 
p 

-- - S -
= 

S 

( )1 / 2 1 / 21 
( ) ( ) ) | |

2 
T d 

i i i i ix x Pm m p w - Ø ø- S - - S +º ß 

[ ]( | ) ( )i i iPw w= = 

If we assume a Gaussian for a class model: 

(  | )  
(2  

p x  

ln  (2  ln ( )  = -

(  )  ln  g  x  p x  

… and the minimum error rate classifier: 
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Boundary Between Two Normal Distributions


2 1 

1 1 
( )

2 2i i I W I Is s 
s s 

Ø ø
� = - = � -Œ œ 

º ß 

1 2 0( )  Tg x g x w quadratic= - == + + -

Special cases: 

1 2 0 ( )W linearS � = � -

( )1 1 
1 2 

1 
2 

W - -S - S  

1 1 
1 1 2 2w m m - -- S  

...ow = well, the rest of it 

where 

2)  g  x  a  circle S  =  

(  )  (  )  g  x  x  Wx  wx  

1)  g  x  = S  

Discriminant (after some algebra): 

= -

= S  

- a matrix 

- a vector 

- a scalar 
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Evaluating Decisions


1 2'd 
m m 

s 
-

= 

High d’ means that the classes are easy to discriminate. 

Is 70% classification rate good or bad? 

70% = BAD 70% = GOOD 

Discriminability: 
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ROC


We do not know 1 2, ,m m s  

but we can get: 

* 
2( | )P x x x w> ˛ 

* 
2( | )P x x x w< ˛ 

* 
1( | )P x x x w> ˛ 

* 
1( | )P x x x w< ˛ 

Each x* corresponds to a point on hit/false_alarm plane. 

This is called an ROC curve 

- probability of hit 

- probability of false alarm 

- probability of miss 

- probability of correct rejection 
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ROC Curve


Fall 2004 Pattern Recognition for Vision 



Reality


It tells us how well the classifier can deal with the data set. 

In practice, it is done for a single parameter 

Using the data for which true ω is known: 
• Identify a parameter of interest 
• Identify the parameter range 
• Vary the parameter within the range 
• Compute P(hit) and P(false_alarm) empirically for each value 
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Homework – Part I


• A “chance” puzzle 
– Try to solve it 
– Understand the solution 
– 

• Build an ROC curve 
– Almost like in class 
– Can you implement it efficiently? 

Simulate in Matlab 

Fall 2004 Pattern Recognition for Vision 


