9.913 Pattern Recognition for Vision

Class VI – Density Estimation Yuri Ivanov

Road Map

Generative vs. Discriminative

There are two schools of thought in Machine Learning:

- 1. Generative:
 - Estimate class models from data
 - <u>Compute</u> the <u>discriminant</u> function
 - Plug in your data get the answer
- 2. Discriminative:
 - Estimate the discriminant from data
 - Plug in your data get the answer

Last class

Density Estimation

Density Estimation is at the core of generative Pattern Recognition

$$P(a < x < b) = \int_{a}^{b} p(x)dx$$

mean:
$$E[x] = \int xp(x)dx$$

covariance:
$$E[(x-E[x])(x-E[x])^T]$$

$$= \int \left[(x - E[x])(x - E[x])^T \right] p(x) dx$$

function mean:
$$E[f(x)] = \int f(x)p(x)dx$$

conditional mean:
$$E[y | x] = \int yp(y | x)dx$$

Refresher

Minimum expected risk:

$$R^* = \int \min_{\mathbf{w}} \left[R(\mathbf{a} \mid x) \right] p(x) dx$$

... is based on conditional risk:

$$\mathbf{w}_i = \arg\min_{\mathbf{w}} R(\mathbf{a} \mid x)$$

... which is computed from the posterior:

$$R(\mathbf{a} \mid x) = L(\mathbf{a} \mid \mathbf{w})P(\mathbf{w} \mid x)$$

... which depends on the likelihood:

$$P(\mathbf{w} \mid x) = \frac{p(x \mid \mathbf{w})P(\mathbf{w})}{p(x)}$$

Setting

Data:

$$D = \{D_i\}_{i=1}^C$$

Assume that D_j contains noinformation about \mathbf{w}_i , $\forall i \neq j$

NOTATIONALLY - we abandon the class label:

$$p(x|\mathbf{x}) \implies p(x)$$

Keep in mind: $p(x | \mathbf{w}_i) \neq p(x)$

Goal:

model the probability density function p(x), given a finite number of data points, $x_1, x_2, ..., x_N$, drawn from it.

Three Methods

- 1. Parametric
 - Good: small number of parameters
 - Bad: choice of the parametric form
- 2. Non-parametric
 - Good: data "dictates" the approximator
 - Bad: large number of parameters
- 3. Semi-parametric
 - Good: combine the best of both worlds
 - Bad: harder to design
 - Good again: design can be subject to optimization

Parametric Density Estimation

Estimate the density from a given functional family

Given:
$$p(x | \boldsymbol{q}) = f(x, \boldsymbol{q})$$

Find: q

Two methods of parameter estimation:

- 1. Maximum Likelihood method
 - Parameters are viewed as unknown but fixed values
- 2. Bayesian method
 - Parameters are random variables that have their distributions

Normal (Gaussian) Density Function

$$q = (m, \Sigma)$$

$$p(x \mid \boldsymbol{q}) = \frac{1}{(2\boldsymbol{p})^{d/2} \mid \boldsymbol{\Sigma} \mid^{1/2}} \exp\left(-\frac{1}{2} \left((x - \boldsymbol{m})^T \boldsymbol{\Sigma}^{-1} (x - \boldsymbol{m}) \right) \right)$$

Number of dimensions

"Volume" of the covariance

Squared Mahalanobis distance

$$\mathbf{m} = E[x]$$

– d parameters

$$\Sigma = E \left[(x - \mathbf{m})^T (x - \mathbf{m}) \right]$$

-d(d+1)/2 parameters

Normal Density

$$\mathbf{m} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & 0 & .5 \\ 0 & 1 & .3 \\ .5 & .3 & 1 \end{bmatrix}$$

Constant density, $(x - \mathbf{m})^T \Sigma^{-1} (x - \mathbf{m}) = C$ - quadratic surface

 Σ - Positive semidefinite

Principal axes: eigenvectors of Σ Length: $\sqrt{I_i}$, I - eigenvalues of Σ

Whitening Transform

Define:

$$\Lambda = diag\left(eigval\left(\Sigma\right)\right)$$
 - Scaling matrix

$$\Phi = eigvec(\Sigma)$$

- Rotation matrix

Then:

$$W = \Lambda^{-1/2} \Phi^T$$

-"Unscales" and "unrotates" the data

For all:

$$x \sim N(\mathbf{0}, \Sigma)$$

You Are Here

Maximum Likelihood

Parameters are fixed but unknown.

$$D \equiv \left\{ x^1, x^2, \dots, x^N \right\} - \text{a data set, drawn from } p(x)$$

Notationally, we make density explicitly dependent on parameters:

$$p(x) \Longrightarrow p(x|\mathbf{q})$$

Assuming that the data is drawn independently (i.i.d.):

$$L(\boldsymbol{q}) \equiv p(D | \boldsymbol{q}) = \prod_{n=1}^{N} p(x^n | \boldsymbol{q})$$
 - a likelihood function

To find θ Maximize $L(\theta)$ w.r.t. parameters.

Maximum Likelihood

Maximizing $L(\theta)$ is equivalent to maximizing log-likelihood function:

$$l(\boldsymbol{q}) \equiv \log L(\boldsymbol{q}) = \log \prod_{n=1}^{N} p(x^{n} | \boldsymbol{q}) = \sum_{n=1}^{N} \log p(x^{n} | \boldsymbol{q})$$

To find θ set the derivative to 0:

$$\nabla_{\boldsymbol{q}} l(\boldsymbol{q}) = \sum_{n=1}^{N} \nabla_{\boldsymbol{q}} \log p(x^{n} | \boldsymbol{q}) = 0$$

And solve for θ

Quick Summary – ML Parameter Estimation

Fall 2004

Solving a Maximum Likelihood Problem

Maximum Likelihood Example

In d-dimensions:

$$\nabla_{\boldsymbol{q}} l(\boldsymbol{q}) = \sum_{n} \nabla_{\boldsymbol{q}} \left\{ -\frac{d}{2} \log \left[2\boldsymbol{p} \right] - \frac{1}{2} \log \left[\left| \boldsymbol{\Sigma} \right| \right] - \frac{1}{2} (\boldsymbol{x}^{n} - \boldsymbol{m})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}^{n} - \boldsymbol{m}) \right\}$$

Solving for the mean:

$$\nabla_{\mathbf{m}} l(\mathbf{q}) = -\frac{1}{2} \sum_{n} \Sigma^{-1} (x^{n} - \hat{\mathbf{m}}) = 0 \implies$$

$$\hat{\mathbf{m}} = \frac{1}{N} \sum_{n=1}^{N} x^{n}$$
 - arithmetic average of samples

Maximum Likelihood Example (cont.)

$$\nabla_{\boldsymbol{q}} l(\boldsymbol{q}) = \sum_{n} \nabla_{\boldsymbol{q}} \left\{ -\frac{d}{2} \log \left[2\boldsymbol{p} \right] - \frac{1}{2} \log \left[\left| \boldsymbol{\Sigma} \right| \right] - \frac{1}{2} (\boldsymbol{x}^{n} - \boldsymbol{m})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}^{n} - \boldsymbol{m}) \right\}$$

Solving for the covariance:

For symmetric
$$M$$
: $\frac{d|M|}{dM} = |M|M^{-1}$ and $\frac{d(a^T M^{-1}b)}{dM} = M^{-1}ab^T M^{-1} \Longrightarrow$

$$\nabla_{\Sigma} l(\boldsymbol{q}) = -\frac{1}{2} \sum_{n} \left\{ \hat{\Sigma}^{-1} - \hat{\Sigma}^{-1} (x^{n} - \hat{\boldsymbol{m}}) (x^{n} - \hat{\boldsymbol{m}})^{T} \hat{\Sigma}^{-1} \right\} = 0 \implies$$

biased
$$\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} \left(x^n - \hat{\boldsymbol{m}} \right) \left(x^n - \hat{\boldsymbol{m}} \right)^T$$

-arithmetic average of indiv. covariances

Recursive ML

What if data comes one sample at a time?

$$\hat{\mathbf{m}}_{N} = \frac{1}{N} \sum_{n=1}^{N} x^{n} = \frac{1}{N} \left[x^{N} + \sum_{n=1}^{N-1} x^{n} \right]$$

$$= \frac{1}{N} \left[x^{N} + (N-1) \hat{\mathbf{m}}_{N-1} \right] = \hat{\mathbf{m}}_{N-1} + \frac{1}{N} \left[x^{N} - \hat{\mathbf{m}}_{N-1} \right]$$

This estimate "stiffens" with more data (as it should).

One idea – fix the fraction. Then the estimate can track a non-stationary process

Recursive ML

Fix the update rate and retrace the steps:

$$v_{N} = v_{N-1} + \mathbf{g} \left[x^{N} - v_{N-1} \right] = (1 - \mathbf{g}) v_{N-1} + \mathbf{g} x^{N}$$

$$= (1 - \mathbf{g})^{2} v_{N-2} + (1 - \mathbf{g}) \mathbf{g} x^{N-1} + \mathbf{g} x^{N}$$

$$= (1 - \mathbf{g})^{M} v_{N-M} + \sum_{k=1}^{M} (1 - \mathbf{g})^{M-k} \mathbf{g} x^{k}$$

$$v_{n} \qquad \mathbf{m}_{n}$$

Simple Example

Several images from a static camera:

How much noise is in it?

$$x = vec\left(I_{t} - I_{t-1}\right)$$

$$\mathbf{m} = 0$$

$$s = 1.2$$

Now we can set a threshold that will statistically distinguish pixel noise from an object

Problems with ML

We are given two estimates:

Which one do we believe?

ML gives a single solution, regardless of uncertainty.

You Are Here

In classification our goal so far has been to estimate $P(\mathbf{w} \mid x)$

Let's make the dependency on the <u>data</u> explicit:

$$P(\mathbf{w}_i \mid x, D) = \frac{p(x \mid \mathbf{w}_i, D)P(\mathbf{w}_i \mid D)}{p(x \mid D)}$$

- $P(\mathbf{w}_i | D)$ this is easy to compute
- P(x | D) this is easy to compute by marginalization

What about $p(x | \mathbf{w}_i, D)$?

$$P(\mathbf{w}_i \mid x, D) = \frac{p(x \mid \mathbf{w}_i, D)P(\mathbf{w}_i \mid D)}{p(x \mid D)}$$

This is a supervised problem so far:

$$D = \{D_1, D_2, ..., D_N\}$$

$$p(x \mid \mathbf{w}_i, D) = p\left(x \mid \mathbf{w}_i, \left\{D_j\right\}_{j=1...N}\right)$$

$$= p\left(x \mid \mathbf{w}_i, D_i, \left\{D_j\right\}_{j \neq i}\right) = p\left(x \mid \mathbf{w}_i, D_i\right)$$

$$P(\mathbf{w}_i \mid x, D) = \frac{p(x \mid \mathbf{w}_i, D_i) P(\mathbf{w}_i \mid D)}{p(x \mid D)}$$

We will assume that we can obtain "labeled" data, so again:

$$p(x|\mathbf{w}_i,D_i) \Longrightarrow p(x|D)$$

Now our problem is to compute density for *x* given the data *D*.

We assume the form of p(x) – the source density for D:

$$p(x) \Longrightarrow p(x|\mathbf{q})$$

... and treat θ as a random variable

Instead of choosing a value for a parameter, we use them all:

$$p(x \mid D) = \int p(x, \mathbf{q} \mid D) d\mathbf{q} = \int p(x \mid \mathbf{q}, \mathbf{p}) p(\mathbf{q} \mid D) d\mathbf{q}$$

Data predicts the new sample

x is independent of D given q

$$= \int p(x|\mathbf{q})p(\mathbf{q}|D)d\mathbf{q}$$
We chose the form What is this? of this

Average densities $p(x/\mathbf{q})$ for ALL possible values of \mathbf{q} weighted by its posterior probability

Computing the posterior probability for q:

Using Bayes rule:

rule:
$$p(\mathbf{q} \mid D) = \frac{p(D \mid \mathbf{q}) p(\mathbf{q})}{\int p(D \mid \mathbf{q}) p(\mathbf{q}) d\mathbf{q}}$$

Prior belief about the parameters (<u>denisty</u>)

Using independence:

$$p(D \mid \boldsymbol{q}) = \prod_{n=1}^{N} p(x^{n} \mid \boldsymbol{q})$$

Bayesian method does not commit to a particular value of θ , but uses the *entire distribution*.

Quick Summary – Bayesian Parameter Estimation

Bayesian Parameter Estimation - Example

First let's deal with the parameter:

 $\int p(x \mid \mathbf{m}) p(\mathbf{m} \mid D) d\mathbf{m}$

Likelihood:
$$p(x \mid \mathbf{m}) = \mathbf{N}(\mathbf{m}, \mathbf{s}^2)$$
 fixed

Parameter prior:
$$p(\mathbf{m}) = \mathbf{N}(\mathbf{m}_0, \mathbf{s}_0^2)$$

Need to find:
$$p(\mathbf{m}|D)$$

Bayes rule again:

$$p_{N}(\mathbf{m}|D) = \frac{p(D|\mathbf{m})p(\mathbf{m})}{p(D)} = \mathbf{a} \left[\prod_{n=1}^{N} p(x^{n}|\mathbf{m}) \right] \mathbf{N}(\mathbf{m}_{0}, \mathbf{s}_{0}^{2}) = \mathbf{N}(\mathbf{m}_{N}, \mathbf{s}_{N})$$

N-sample parameter posterior

This is a Gaussian

Bayesian Parameter Estimation - Example

So, the posterior is a Gaussian

$$p_N(\mathbf{m}|D) = \mathbf{N}(\mathbf{m}_N, \mathbf{s}_N)$$

After some algebra and identifying the terms:

$$\frac{1}{|\mathbf{s}|^2} = \frac{1}{|\mathbf{s}|^2} N + \frac{1}{|\mathbf{s}|^2} - \text{when Gaussians multiply} - \text{precisions add}$$

... and

$$\mathbf{m}_{N} = \frac{\mathbf{N} \mathbf{S}_{0}^{2}}{\mathbf{N} \mathbf{S}_{0}^{2} + \mathbf{S}^{2}} \overline{x} + \frac{\mathbf{S}^{2}}{\mathbf{N} \mathbf{S}_{0}^{2} + \mathbf{S}^{2}} \mathbf{m}_{0}$$

With increasing *N* covariance of the posterior decreases and the prior becomes unimportant.

Bayesian Parameter Estimation - Example

Now the integral:

$$p(x|D) = \int p(x|\mathbf{q})p(\mathbf{q}|D)d\mathbf{q}$$

$$= \int \mathbf{N}(\mathbf{m}, \mathbf{s}^{2})\mathbf{N}(\mathbf{m}_{N}, \mathbf{s}_{N}^{2})d\mathbf{m} = \mathbf{N}(\mathbf{m}_{N}, \mathbf{s}^{2} + \mathbf{s}_{N}^{2})$$
You can show that it is also a Gaussian

Any guesses about why Gaussian is such a common assumption?

Recursive Bayes

For *N*-point likelihood:

$$\frac{p(D^N | \boldsymbol{q})}{p(D^N | \boldsymbol{q})} = \prod_{n=1}^N p(x^n | \boldsymbol{q})$$

$$= p(x^N | \boldsymbol{q}) \prod_{n=1}^{N-1} p(x^n | \boldsymbol{q}) = p(x^N | \boldsymbol{q}) \frac{p(D^{N-1} | \boldsymbol{q})}{p(D^{N-1} | \boldsymbol{q})}$$

From this the recursive relation for the posterior:

$$p(\boldsymbol{q} \mid \boldsymbol{D}^{N}) = \frac{p(x^{N} \mid \boldsymbol{q}) p(D^{N-1} \mid \boldsymbol{q}) p(\boldsymbol{q})}{p(D^{N})}$$

$$= \frac{p(x^{N} \mid \boldsymbol{q}) p(\boldsymbol{q} \mid D^{N-1})}{\int p(x^{N} \mid \boldsymbol{q}) p(\boldsymbol{q} \mid D^{N-1}) d\boldsymbol{q}}$$

Recursive Bayes (cont.)

Again:

$$p(\boldsymbol{q} \mid \boldsymbol{D}^{N}) = \frac{p(\boldsymbol{x}^{N} \mid \boldsymbol{q}) p(\boldsymbol{q} \mid \boldsymbol{D}^{N-1})}{\int p(\boldsymbol{x}^{N} \mid \boldsymbol{q}) p(\boldsymbol{q} \mid \boldsymbol{D}^{N-1}) d\boldsymbol{q}} - 1 - \text{point update.}$$

Setting N=1:

$$\frac{1}{|\mathbf{S}_{n}|^{2}} = \frac{1}{|\mathbf{S}|^{2}} + \frac{1}{|\mathbf{S}_{n-1}|^{2}}$$

$$\mathbf{m}_{n} = \frac{|\mathbf{S}_{n-1}|^{2}}{|\mathbf{S}|^{2} + |\mathbf{S}|^{2}} x + \frac{|\mathbf{S}|^{2}}{|\mathbf{S}|^{2} + |\mathbf{S}|^{2}} \mathbf{m}_{n-1}$$

Recursive Bayes (cont.)

Problems with Bayesian Method

- 1. Integration is difficult
- 2. Analytic solutions are only available for restricted class of densities
- 3. Technicality: If the true $p(x/\mathbf{q})$ is NOT what we assume it is, the prior probability of any parameter setting is 0!
- 4. Integration is difficult
- 5. Did I mention that the integration is hard?

Relation between Bayesian and ML Inference

$$p(\boldsymbol{q} \mid D) \propto p(D \mid \boldsymbol{q}) p(\boldsymbol{q})$$

$$= \left[\prod_{n} p(x^{n} \mid \boldsymbol{q})\right] p(\boldsymbol{q}) = L(\boldsymbol{q}) p(\boldsymbol{q})$$
peaks at $\hat{\boldsymbol{q}}_{ML}$

If the peak is sharp and $p(\theta)$ is flat, then:

$$p(x|D) = \int p(x|\mathbf{q}) p(\mathbf{q}|D) d\mathbf{q}$$

$$\simeq \int p(x|\hat{\mathbf{q}}) p(\mathbf{q}|D) d\mathbf{q} = p(x|\hat{\mathbf{q}}) \int p(\mathbf{q}|D) d\mathbf{q} = p(x|\hat{\mathbf{q}})$$

$$\text{As } N \to \infty, p(x|D) \leftrightarrow p(x|\hat{\mathbf{q}})$$

Fall 2004

Non-Parametric Methods for Density Estimation

Non-parametric methods do not assume any particular form for p(x)

- 1. Histograms
- 2. Kernel Methods
- 3. K-NN method

Fall 2004

You Are Here

Histograms

 $\hat{P}(x)$ is a discrete approximation of p(x)

• Count a number of times that x lands in the i-th bin

$$H(i) = \sum_{j=1}^{N} I(x \in R_i), \quad \forall i = 1, 2, ..., M$$

Normalize

$$\hat{P}(i) = \frac{H(i)}{\sum_{j=1}^{M} H(j)}$$

Histograms

How many bins?

Histograms

Good:

- Once it is constructed, the data can be discarded
- Quick and intuitive

Bad:

- Very sensitive to number of bins, M
- Estimated density is not smooth
- Poor generalization in higher dimensions

Aside: Curse of dimensionality (Bellman, '61):

- Imagine we build a histogram of a 1-d feature (say, *Hue*)
 - 10 bins
 - 1 bin = 10% of the input space
 - need at least 10 points to populate every bin
- We add another feature (say, Saturation)
 - 10 bins again
 - 1 bin = 1% of the input space
 - we need at least 100 points to populate every bin
- •We add another feature (say, Value)
 - 10 bins again
 - 1 bin = 0.1% of the input space
 - we need at least 1000 points to populate every bin

$$N = b^d$$

- number of points grows exponentially

Aside: Curse Continues

Volume of a cube in \mathbb{R}^d with side l:

$$V_l = l^d$$

Volume of a cube with side l- ϵ :

$$V_{\boldsymbol{e}} = (l - \boldsymbol{e})^d$$

Volume of the ε -shell:

$$\Delta = V_l - V_e = l^d - (l - e)^d$$

Ratio of the volume of the ε -shell to the volume of the cube:

$$\frac{\Delta}{V_l} = \frac{l^d - (l - \boldsymbol{e})^d}{l^d} = 1 - \left(1 - \frac{\boldsymbol{e}}{l}\right)^d \to 1 \text{ as } d \to \infty \text{ !!!!!}$$

Aside: Lessons of the curse

In generative models:

- Use as much data as you can get your hands on
- Reduce dimensionality as much as you can get away with

<End of Digression>

General Reasoning

By definintion:

$$P(x \in R) = P = \int_{R} p(x')dx'$$

If we have N i.i.d. points drawn form p(x):

$$P(\mid x \in R \mid = k) = \frac{N!}{k!(N-k)!} P^{k} (1-P)^{N-k} = B(N, P)$$
Num. of unique splits
$$K \text{ vs. (N-K)}$$
Prob that $k \text{ of } rest \text{ are not } rest \text{ are not } rest \text{ particular } x \text{-es are in } R$

B(N, P) is a binomial distribution of k

General Reasoning (cont.)

Mean and variance of B(N, P):

Mean:
$$\mathbf{m} = E[k] = NP \implies P = E[k/N]$$

Variance:
$$s^2 = E[(k - m)^2] = NP(1 - P)$$

$$\Rightarrow E\left[\left(k/N-P\right)^{2}\right] = \left(\frac{S}{N}\right)^{2} = P(1-P)/N$$

That is:

- E[k/N] is a good estimate of P
- P is distributed around this estimate with vanishing variance

So:

$$P \simeq k / N$$

General Reasoning (cont.)

So:

$$P \simeq k / N$$

On the other hand, under mild assumptions:

$$P = \int_{R} p(x')dx' \approx p(x)V$$
Volume of \underline{R}
(not $p(x)$)

... which leads to:

$$p(x) \simeq \frac{k}{NV}$$

General Reasoning (cont.)

Now, given N data points – how do we really estimate p(x)?

$$p(x) \simeq \frac{k}{NV}$$

Fix *k* and vary *V* until it encloses *k* points

Fix *V* and count how many points (k) it encloses

K-Nearest Neighbors (KNN)

Kernel methods

You Are Here

Kernel Methods of Density Estimation

We choose *V* by specifying a hypercube with a side *h*:

$$V = h^d$$

Mathematically:

$$H(\mathbf{y}) = \begin{cases} 1 & |y_j| < 1/2 & j = 1,...,d \\ 0 & \text{otherwise} \end{cases}$$

kernel function:

$$H(\mathbf{y}) \ge 0$$
, $\forall \mathbf{y}$ and $\int H(\mathbf{y}) d\mathbf{y} = 1$

Parzen Windows

Then

$$H\left(\left(\mathbf{x}-\mathbf{x}^{n}\right)/h\right)$$
 - a hypercube with side h centered at \mathbf{x}^{n}

H can help count the points in a volume V around any x:

Rectangular Kernel

So the number of points in h-neighborhood of *x*:

$$k(x) = \sum_{n=1}^{N} H\left(\frac{x - x^{n}}{h}\right)$$

... is easily converted to the density estimate:

$$\tilde{p}(x) = \frac{k(x)}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^d} H\left(\frac{x - x^n}{h}\right) - K(x, x^n)$$
Integrates to 1

Subtle point:

$$\int \left[\frac{1}{N} \sum_{n=1}^{N} K(x, x^{n}) \right] dx = \frac{1}{N} \sum_{n=1}^{N} \left[\int K(x, x^{n}) dx \right] = 1$$

$$\Rightarrow \int \tilde{p}(x) dx = 1$$

Example

Smoothed Window Functions

The problem is as in histograms – it is discontinuous

We can choose a smoother function, s.t.:

$$\tilde{p}(x) \ge 0$$
, $\forall x$ and $\int \tilde{p}(x) dx = 1$

Ensured by kernel conditions

Eg: <loud cheer> a (spherical) Gaussian:

$$K(x,x^n) = \frac{1}{(\sqrt{2\boldsymbol{p}}h)^d} \exp\left(-\frac{\|x-x^n\|}{2h^2}\right)$$

... SO:

$$\tilde{p}(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(\sqrt{2p}h)^d} \exp\left(-\frac{\|x - x^n\|}{2h^2}\right)$$

Example

Some Insight

Interesting to look at expectation of the estimate with respect to all possible datasets:

$$E\left[\tilde{p}(x)\right] = E\left[\frac{1}{N}\sum_{n=1}^{N}K(x,x^n)\right] = E\left[K(x,x')\right]$$

$$= \int K(x-x')p(x')dx' - convolution with true density$$

That is:

$$\tilde{p}(x) = p(x)$$
 if $K(x, x') = \boldsymbol{d}(x, x')$

But not for the finite data set!

Conditions for Convergence

How small can we make h for a given N?

$$\lim_{N\to\infty}h_N^d=0$$

- It should go to 0

$$\lim_{N\to\infty} Nh_N^d = \infty$$

- But slower than 1/N

Based on the similar analysis of variance of estimates

Eg:
$$h_N^d = h_1^d / \sqrt{N}$$
$$h_N^d = h_1^d / \log(N)$$

Note that the choice of h_1^d is still up to us.

Problems With Kernel Estimation

- Need to choose the width parameter, h
 - Can be chosen empirically
 - Can be adaptive, eg. $\frac{h_j = hd_{jk}}{h_j}$ where d_{jk} the distance from x_i to k-th nearest neighbor
- Need to store all data to represent the density
 - Leads to Mixture Density Estimation

You Are Here

Fall 2004

K-Nearest Neighbors

Recall that:

$$\tilde{p}(x) = \frac{k}{NV}$$

Now we fix k (typically $k = \sqrt{N}$) and expand V to contain k points

This is not a true density!

Eg.: choose N=1, k=1. Then:

$$\tilde{p}(x) = \frac{1}{1 \cdot \|x - x_1\|}$$
 Oops!

BUT it is useful for a number of theoretical and practical reasons.

K-NN Classification Rule

Let's try classification with K-NN density estimate

Data: N - total points

 N_j - points in class \mathbf{W}_j

Need to find the class label for a query, x

Expand a sphere from x to include K points

K - number of neighbors of x

 K_j - points of class W_j among K

KNN Classification

Then class priors are given by: $p(\mathbf{w}_j) = \frac{N_j}{N_j}$

We can estimate conditional and marginal densities around any x:

$$p(x \mid \mathbf{w}_j) = \frac{K_j}{N_i V} \qquad p(x) = \frac{K}{NV}$$

By Bayes rule: $p(\mathbf{w}_j \mid x) = \frac{K_j}{N_j V} \frac{N_j}{N} \frac{NV}{K} = \frac{K_j}{K}$

Then for *minimum error rate* classification:

$$C = \underset{j}{\operatorname{arg max}} K_{j}$$

KNN Classification

Important theoretical result:

In the extreme case, K=1, it can be shown that:

for
$$P = \lim_{N \to \infty} P_N(error)$$

$$P^* \le P \le P^* \left(2 - \frac{c}{c - 1} P^* \right)$$

That is, using just a single neighbor rule, the error rate is at most twice the Bayes error!!!

Problems with Non-parametric Methods

- Memory: need to store all data points
- Computation: need to compute distances to all data points every time
- Parameter choice: need to choose the smoothing parameter

Fall 2004

You Are Here

Fall 2004

Mixture Density Model

Mixture model – a linear combination of parametric densities

Uses MUCH less "kernels" than kernel methods Kernels are parametric densities, subject to estimation

Example

Using ML principle, the objective function is the *log-likelihood*:

$$l(\mathbf{q}) \equiv \log \prod_{n=1}^{N} p(x^n) = \sum_{n=1}^{N} \log \left\{ \sum_{j=1}^{M} p(x^n \mid j) P(j) \right\}$$

Differentiate w.r.t. parameters:

$$\nabla_{\boldsymbol{q}_{j}} l(\boldsymbol{q}) = \sum_{n=1}^{N} \frac{\partial}{\partial \boldsymbol{q}_{j}} \log \left\{ \sum_{k=1}^{M} p(x^{n} \mid k) P(k) \right\}$$

$$= \sum_{n=1}^{N} \frac{1}{\sum_{j=1}^{M} p(x^{n} \mid k) P(k)} \frac{\partial}{\partial \boldsymbol{q}_{j}} p(x^{n} \mid j) P(j)$$

Again let's assume that $p(x/\omega)$ is a Gaussian

We need to estimate M priors, and M sets of means and covariances

$$\frac{\partial l(\boldsymbol{q})}{\partial \boldsymbol{m}_{j}} = \sum_{n=1}^{N} P(j \mid x^{n}) \left[\Sigma_{j}^{-1} (x^{n} - \hat{\boldsymbol{m}}_{j}) \right]$$

Setting it to θ and solving for μ_i :

$$\hat{\mathbf{m}}_{j} = \frac{\sum_{n=1}^{N} P(j \mid x^{n}) x^{n}}{\sum_{n=1}^{N} P(j \mid x^{n})}$$

- convex sum of all data

Similarly for the covariances:

$$\frac{\partial l(\boldsymbol{q})}{\partial \boldsymbol{s}_{j}^{2}} = \sum_{n=1}^{N} P(j \mid \boldsymbol{x}^{n}) \left[\hat{\mathbf{S}}_{j}^{-1} - \hat{\mathbf{S}}_{j}^{-1} (\boldsymbol{x}^{n} - \hat{\boldsymbol{m}}_{j}) (\boldsymbol{x}^{n} - \hat{\boldsymbol{m}}_{j})^{T} \hat{\mathbf{S}}_{j}^{-1} \right]$$

Setting it to θ and solving for Σ_i :

$$\hat{\mathbf{S}}_{j} = \frac{\sum_{n=1}^{N} P(j \mid x^{n}) \left(x^{n} - \hat{\mathbf{m}}_{j}\right) \left(x^{n} - \hat{\mathbf{m}}_{j}\right)^{T}}{\sum_{n=1}^{N} P(j \mid x^{n})}$$

A little harder for P(j) – optimization is subject to constraints:

$$\sum_{j=1}^{M} P(j) = 1 \quad and \quad P(j) \ge 0, \forall j$$

Here is a trick to enforce the constraints:

$$P(j) = \frac{\exp(\boldsymbol{g}_j)}{\sum_{k=1}^{M} \exp(\boldsymbol{g}_k)}$$

$$\frac{\partial P(i)}{\partial \mathbf{g}_{i}} = \mathbf{d}(i-j)P(j) - P(i)P(j)$$

Using the chain rule:

$$\nabla_{\mathbf{g}_{j}} l(\mathbf{q}) = \sum_{k=1}^{M} \frac{\partial l(\mathbf{q})}{\partial P(k)} \frac{\partial P(k)}{\partial \mathbf{g}_{j}} = \sum_{k=1}^{M} \sum_{n=1}^{N} \frac{p(x^{n} \mid k)}{P(x)} \Big(\mathbf{d}_{jk} P(j) - P(j) P(k) \Big)$$

$$= \sum_{n=1}^{N} \left\{ \frac{p(x^{n} \mid j)}{P(x)} P(j) - \sum_{k=1}^{M} \frac{p(x^{n} \mid k)}{P(x)} P(j) P(k) \right\}$$

$$= \sum_{n=1}^{N} \left\{ P(j \mid x^{n}) - P(j) \sum_{k=1}^{M} p(k \mid x^{n}) \right\} = \sum_{n=1}^{N} \left\{ P(j \mid x^{n}) - P(j) \right\} = 0$$

The last expression gives the value at the extremum:

$$P(j) = \frac{1}{N} \sum_{n=1}^{N} P(j | x^{n})$$

What's the problem?

$$P(j) = \frac{1}{N} \sum_{n=1}^{N} P(j | x^{n})$$

$$\hat{\boldsymbol{m}}_{j} = \frac{\sum_{n=1}^{N} P(j \mid x^{n}) x^{n}}{\sum_{n=1}^{N} P(j \mid x^{n})}$$

$$\hat{\mathbf{S}}_{j} = \frac{\sum_{n=1}^{N} P(j \mid x^{n}) \left(x^{n} - \hat{\mathbf{m}}_{j}\right) \left(x^{n} - \hat{\mathbf{m}}_{j}\right)^{T}}{\sum_{n=1}^{N} P(j \mid x^{n})}$$

We can't compute these directly!

Solution – EM algorithm. We will study it in Clustering.

You Are Here

Fall 2004