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Notation & Basics
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Principal Component Analysis (PCA)

Purpose
For a set of samples of a random vector 

,discover or reduce the dimensionality and 
identify meaningful variables.
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Principal Component Analysis (PCA)

PCA by Variance Maximization

Au
Bu

2 2
A B

σ σ>u u

{ } { }
{ } { }

{ }

1

1

1

1

2 2
1 1

2
1 1 1 1

2
1 1

1

Find the vector ,such that the variance of the data along this 
direction is maximized: 
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Principal Component Analysis (PCA)

{ }

For a given ,  find  orthonormal basis vectors 
such that the variance of the data along these vectors 
is maximally large, under the constraint of decorrelation:  
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ution are the eigenvectors of  ordered according to 
decreasing eigenvalues :
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( )( )

p p p

T T T T T T
i n i n i n i n nE E

λ

λ λ λ

λ

= = = > >

= = = =

C

u e u e u e

e x e x e xx e e Ce e e 0

PCA by Variance Maximization
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Principal Component Analysis (PCA)

PCA by Mean Square Error Compression
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For a given ,  find  orthonormal basis vectors such that 
ˆthe  between  and its projection  into the subspace spanned
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
How to determine the number of principal components ?p
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Linear signal model with unknown number of signals:
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Principal Component Analysis (PCA)

Computing the PCA 
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Given a set of samples ,..., of a random vector 
calculate mean and covariance.
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Principal Component Analysis (PCA)

Computing the PCA 
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If the number of samples  is smaller than the 
dimensionality  of :
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Principal Component Analysis (PCA)

Examples

Eigenfaces for face recognition (Turk&Pentland):

Training:
-Calculate the eigenspace for all faces in the training database
-Project each face into the eigenspace feature reduction

Classification:
-Projec

→

t new face into eigenspace
-Nearest neighbor in the eigenspace 
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Principal Component Analysis (PCA)

Examples cont.

Feature reduction/extraction 

Original Reconstruction with 20 PC

http://www.nist.gov/
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Independent Component Analysis (ICA)

Generative model
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Noise free, linear signal model:

,...,  Observed variables

,..., latent signals, independent components

unknown mixing matrix, ( ,..., )
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Independent Component Analysis (ICA)
Task

For the linear, noise free signal model, compute  and 
given the measurements .

A s
x
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Blind source separation :
separate the three original signals 

, , and  from their mixtures 
, , and .

s s s
x x x

Figure by MIT OCW.
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Independent Component Analysis (ICA)

Restrictions
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1.) Statistical independence
The signals  must be statistically independent:
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Independent Component Analysis (ICA)

Restrictions

{ } { } { } { }
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Statistical independence cont.
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Independent Component Analysis (ICA)

Restrictions

2 2
1 2

1 2 2 2
1 2 1 2

2.) Nongaussian components
The components  must have a nongaussian distribution
otherwise there is no unique solution.
Example:
given  and two gaussian signals:
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Independent Component Analysis (ICA)

Restrictions

2 2
1 2

1 2

Rotation matrix 

Nongaussian components cont.

under rotation the components remain independent:
cos sin 1, ( , ) exp( )exp( )
sin cos 2 2 2

combine whitening and rotatio
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Independent Component Analysis (ICA)

Restrictions

3.) Mixing matrix must be invertible
The number of independent components is equal to 
the number of observerd variables.
Which means that there are no redundant mixtures.

In case mixing matrix is not invertible apply PCA 
on measurements first to remove redundancy.
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Independent Component Analysis (ICA)

Ambiguities
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1.) Scale
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Reduce ambiguity by enforcing 1

2.) Order
We cannot determine an order of the independant 
components
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Independent Component Analysis (ICA)

Computing ICA
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a) Minimizing mutual information: 
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Independent Component Analysis (ICA)

Computing ICA cont.

b) Maximizing Nongaussianity
1

introduce  and :
From central limit theorem:

 is more gaussian than any of the  and becomes 
least gaussian if .

Iteratively modify such that the "gaussianity"
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PCA Applied to Faces
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Each pixel is a feature, each face image a point in the feature space.
Dimension of feature vector is given by the size of the image.
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 are the eigenvectors which can be
represented as pixel images in the original
cooridinate system ...
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ICA Applied to Faces

…
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Now each image corresponds to a particular observed variable 
measured over time (M samples). N is the number of images.
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PCA and ICA for Faces

Features for face recognition

Image removed due to copyright considerations. See Figure 1 in: Baek, Kyungim et. al.
 "PCA vs. ICA: A comparison on the FERET data set." International Conference of Computer Vision, 
Pattern Recognition, and Image Processing, in conjunction with the 6th JCIS. Durham, NC, March 8-14 2002, June 2001.
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