New Schedule

<
Sep 106 - Vision - Image formation and processing Y
Sep 23 - Vision — Feature extraction | B
Sep 30 - PR/Vis - Feature Extraction I[I/Bayesian decisions B&Y
< Oct 7 - PR - Density estimation Y papers
Oct 14 - PR — Clasification B
Dec. 8 Oct 21 - Biological Object Recognition T
same Oct 28 - PR - Clustering Y&B proj
same Nov 4 - Paper Discussion All
Same Nov 11 - App I - Object Detection/Recognition B
Oct. 21 | Nov 18 - App II - Morphable models T&B
Nov 25 - No class - Thanksgiving day
"2 weeks | Dec 2 - App I - Tracking C&Y
AL week | Dec 9 - App IV - Gesture and Action Recognition Y
N week | Dec 16 - Project presentation All
\. S/
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9.913 Pattern Recognition for Vision

Classification
Bernd Halsele

Fall 2004



Overview

| ntroduction

Linear Discriminant Analysis
Support Vector Machines

Literature & Homework
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| ntroduction

Classification

 Linear, non-linear
Separation

» Two class, multi-class
problems

Two approaches:
 Density estimation, classify with Bayesdecision:

Linear Discr. Analysis (LDA), Quadratic Discr. Analysis (QDA)
 Without density estimation: Support Vector Machines (SVM)

- J
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LDA BayesRule

BayesRule
p(x,w) = p(x |w)P(w) = P(w [x) p(x) P

likel i\hood pri or

([ ) = PXIW)P)
/ p(?\()

posterior evidence

X : random vector
W : class

J
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LDA— BayesDecision Rule

n EPXW)P) O o (X |w)

Pw, |X)
P(w, |x)

Decide w, if

Likelihood Ratio
pOx [W,)P@w,) _
p(X [w,)PWw,)

Log Likelihood Ratio

ep(X|W )P(Wz)ﬂ ep(xlwz)ﬂ

>1; otherwisew,

P (w,) O

+In9

e

P(W,) g
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L DA—Two Classes, |dentical Covariance

\

N
. 1 2 (x-m)TS; (x- m)
Gausslan: p(x |w;) = e’
p( | |) (Zp)d/2|Si |1/2
assume identical covariance matricesS, =S, :
In&p(X|Wl) O+| a:)(Wl)o
CpixIw) g &PWY,) g
&P(w,) 0
—(x m,)" S (x- mz)-—(x m)' S(x- m)+Ing——
eP(Wz)ﬂ
=x' S7(m- r@)+1(n1+mz)TS'1(nz- m)+lnga3(wl)°
) > g ? &P(w 2)ﬂ
b
=x'w+b linear decision function: w, if x'w +b >0 )
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L DA—Two Classes, |dentical Covariance
® U' Rotation ® D'? Scaling

S

f(x)=x'S*(m- m,) +%(rr1 +m)' S7(m, - m)+In(P(w,)/ P(w,))

=x¢ (- m?”%(”?f mg)’ (mg- P +In(P(w,) / P(w,)),
GG=S"x¢ =x'G, x¢t=Gx,nt- M=G(m- m)
S=UDU", S*'=UuDU"=GG G=D"U"

- J
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L DA—Computation

7Density estimation

2
a. (Xi,n - rﬁ)(xi,n - ﬁ?)T

T i

f (x) =sign(x'w +Db)

=S (M - )
&P (w,) O
eP( 2) ﬂ

Approximate by—
N 2

1 . . " "
E(m m)' S(m,- M)+In ¢

J
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QDA—Two classes, different covariance matrix

Quadratic Discriminant Analysis

decidew, if f (x) >0
f(x) =In(p(x|w))+In(Pw,)) - In(p(x|w,))- In(Pw,))

In(p(x|w,)) =- ~In[S,|- -~ (x- M) S(x- m)+InP(w,

f(X)=x"Ax+w'x+w, - quadratic
1

where A=-=(S"'-S} - amatrix
2( 1 2)

w=S"'"m- S,'m - a vector

W, =... wel, therestof it -ascaar

J
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LDA Multiclass, Identical Covariance

Find the linear decision boundaries for k classes:
For two classes we have:

f(x)=x'w+b decidew, if f(x)>0
In the multi-class case we have k -1 decison functions:
f1,2 (X) = XT W1,2 + bl,Z’

f1,3 (X) = XTW1,3 T bl,3’

f (X)) = XTW1,|< +b,
P we haveto determine (k- 1)( p +1) parameters,
p isdimension of x

J
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LDA Multiclass, Identical Covariance

X

yl(ﬁl)

Find the n- dimensional subspace that givesthe
best linear discrimination betw. the k classes.

y=(w, |w, |...]w_)"x

also known as Fisher Linear Discriminant

J
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L DA—Multiclass, |dentical Covariance

Computation
computethed” k matrix M =(m| m,|...|m) and cov. matrix S
compute them® M&GM |, S '=G'G
compute the cov. matrix B¢of nf
compute the eigenvectors v¢ of B¢ranked by eigenvalues

calculatey by projecting x into X ¢and then onto the eigenvector:
y, =veGxb w =G v¢

J
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L DA—Fisher’s Approach

Find w such that the ratio of between-class and
In-class variance is maximized if the datais projected
ontow :
y=w'X
w'Bw
w' Sw
can be written as:

max  B=MM"' thecovariance of them's

max w' Bw subject tow’ Sw =1
generalized eigenvalue problem,

solution are the ranked eigenvectors of S™'B
...same Is an previous derivation.

J
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The Coffee Problem: LDA vs. PCA

Image removed due to copyright considerations. See: R. Gutierrez-Osuna
http://research.cs.tamu.edu/prism/lectures/pr/pr_110.pdf

J
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LDA/QDA—Summary

4 N

Advantages.
e LDA isthe Bayesclassifier for multivariate Gaussian
distributions with common covariance.
* LDA creates linear boundaries which are smple to compute.
e LDA can be used for representing multi-class data
In low dimensions.

e QDA isthe Bayesclassifier for multivariate Gaussian
distributions.
o QDA creates quadratic boundaries.

Problems:
» LDA isbased on asingle prototype per class (class center) which
IS often insufficient in practice.

- J
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Variants of LDA

Nonparameteric LDA (Fukunaga)

removes the unimodal assumption by the scatter matrix
using local information.

More than k-1 features can be extracted.

Orthonormal LDA (Okada& Tomita) computes projections
that maximize separability and are pair-wise orthonormal.

Generalized LDA (Lowe)
Incorporates a cost function similar to Bayes Risk
minimization.

....and many many more (see “ Elements of Statistical
Learning” Hastie, Tibshirani, Friedman)

J
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SVM—L.inear, Separable (LS)

N
b
_,,+++J;f_-'
N - o
c 'I" . =
9 : K 0
= % o
£ LMK E
) X &)
% X
Dimension 1 Dimension 1
Find the separating function f (x) = sign(x w +b)
which maximizes the margin M = 2d on the training data.
P Maximum margin classifier.
J/
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SVM—Primal, (LS)

-

<
Training data consists of N pairs {(x,, ¥,),.... Xy, Y}y T {-1.3.
The problem of maximizing the margin 2d can be formulated as:

Py (X' we+bg 3 d
max 2d subject to I’y( )

" i wg =1

Dimension 2

or alternatively: w =w@ d, b =bd/d

Dimension 1

wi

Convex optimization problem with quadratic objective function and
linear constraints.

mi bn%”wuz subject toy,(x{ w +b) 3 1, where d = !

J
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SVM—Dudl, (LS)

P
Multiply constraint equations by positive Lagrange multipliers

and subtract them from the objective function:

1 ) , .
Lo =Wl - @ 2 @y (x"w+b)- 15
i=1

Min. L, w.r.t. w and b and max. w.r. t. a., subjecttoa, 3 O.

N N
w=3ayx, aay =0.
=1 i=1

substititung in L ; we get the so called Wolfe dual:

) 18 8 U
max. L= a, - —a & a3y VX X i solve for a; then
i=1 k=1 i=1

N
subjecttoa. 30, ga.y, =0 !

=1

\

Set derivativesdL,/dw and d L,/db to zero and max. w.r. t. a.

| _ 9
y computew = g a,y.x, and

b b from a; gy, (x,'w +b) - 1§=0

J
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SVM—Primal vs. Dua (LS)

Primal:

mibn@ subject to: y. (x'w +b) 3 1

Dual:

& 18 & T . 3
max g ai-Ea aaa,VvyX X supectto:a,®* 0, ga,y =0
i iz k=1 i=1 1=1

The primal has a dense inequality constraint for every point in the
training set. The dual has a single dense equality constraint and a set
of box constraints which makes it easier to solve than the primal.

J
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SVM—Optimality Conditions (LS)

4 )
Optimality conditions for the linearly separable data:
N

qay =0 a30"i, y(x'w+b)-130 "]

=1
N N
w=gayx b f(x)=ga yx x+b
=1 =1
a (y(x'w+b)- D=0"i b a, =0 for pointswhich are

amg : + a 30 not on the boundary of the margin.

- J
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SVM—L.inear, non-separable (LNS)

minluwu2 +C§N_ X, subject to:
wib 2 i=1

y(x'w+b)31-x "i, x, >0"]
X, are called slack variables

C constant, penalizes errors

J
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SVM—Dual (LNS)

Same procedure as in separable case

d
max.L,=q a, -
=1

)
adaa,y Y X

k=1

N | =

i=1
N
subjecttoO£a, £C, é a.y

i=1

solvefor a; then

computew = g a.y.x and

b fromy (x,'w+hb)- 1=0

for any samplex, for whichO<a, <C

J
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SVM—Optimality Conditions (LNS)

. f(0=1

N
f(X)=a ayx x+b
=1
a,=0b x. =0, yf(x)>1 o
O<a, <Cb x, =0 y.f(x,)=1 a unbounded support vectors
a,=Chb x, 30, yf(x)£E1 m o bounded support vectors

- J
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SVM—Non-linear (NL)

Non-linear mapping:

XC=F (X)
X5 Input space X2¢.
° ®
®
—_— o
) o
®
o
O ° .. ®
e o ,°
X

Project into feature space, apply SVM procedure

J
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SVM—Kernd Trick

N

o
max. q a, -

=1

N N
a aaa,y yxexg

k=1 i=1

N |

N
subjecttoO£a, £C, éaiyi =0

i=1
Only the inner product of the samples appears in the objective
function. If we can write: K(x,,X, ) = x¢ x¢
we can avoid any computations in the feature space.

The solution f (x4 = x¢ w +b can be written as:

f() =8 a,yF0TF(x)+b=2 a,yK(x)+b

=1 =1

using w =g a, y x¢

J
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SVM—Kernels

When isaKernel K(u, v) an inner product in a Hilbert space?

Kuv)=alfuf, (v

with positive coefficients|

if forany g(u)1 L,

OX(u,v)g(u)g(v)dudv ®* O Mercer's condition

Some examples of commonly used kernels:

Linear kernel: u'v

Polynomial kernel: (L+u'v)*

Gaussian kernel (RBF):  exp(- |u- v["), shiftinvar.
MLP: tanh(u'v - q)

J
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SVM—Polynomia Kernel

Polynomial second degree kernel

K(u,v)= L+u'v)?, u,vl R?

=1+ (uV,)® +(U,Vv,)? +2u VUV, +Uy, + UV,

=L u?,u?,v2uu,,u,,u,)L V2, Vv,2, 2wy, v, v, )T
F (X) = (L %2, %% V2% %, , X, X, )T

Shift invariant kernel K(u,v) = K(u - v)

defined on L*([0,T]%) can be written

as the Fourier series of K:
i2pkt ¥ j2pkt  j2pkt,

¥
f(t)ziél e T f(t-t)== é’ukeT e T
Tk:-¥ k:-¥

X . . ~
Ku-v)=g |, e®we i@ 1 7(-¥,¥])

k=0

J
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SVM—Unigueness

4 N
Arethea. in the solution unique? No X, y=+1
N : /
F(x)=a a;yx x+b X0 +1 ® X
=1
w =(1,0) —W
: . _ _|_1 Xl
two solutions: 1
a =(0.25,0.25,0.25,0.25) X;0 -1 ® X,
a =(0.5,0.5,0,0)

N
constraints:a; 3 0, g a,y, =0 are satisfied

=1
More important: is the solution f (x) unique?
Y es, the solution is unique and global

If the objective function is strictly convex.
- J/
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SVM—Multiclass

N
Bottom-Up 1vsl 1vs All
AorBorCorD A/

A or B ‘ CorD B/
‘ c /(ABD
B )/

A B C D

ini Training: Kk

Traning: k (k-1)/2 ng.
Classification : k-1 Classification : K

J
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SVM—Choosing the Kernel

How to choose the kernel ?

Linear SVMsare smple to compute, fast at
runtime but often not sufficient for complex tasks.

SVM with Gaussian kernels showed excellent
performance in many applications (after some
tuning of sigma). Slow at run-time.

Polynomial with 2" are commonly used in
computer vision applications. Good trade off
between classification performance computational
complexity.

J
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SVM—Example

-

Face detection with linear and 2™ degree polyn. SYM & LDA

Correct

(CMU Testset 1, 127 imayges, 479 faces, 56.774.966 windows, res 19219, pos 2429, neqg 19932)

1
I O S i LT TR ST b
FE = T S g St S R e ]
D7 o T TR CCTEEE Fosemmeoss ol T
l . | | | :
1Y S oS S — T S S — b
ek e R — . e
[ e e e S e e G e s T B S e T S T S T I S S S i TS S e S S S e e
TEY T S - S — L S S — b
05 : : —— whole, LOA, no mask —whole, lin S¥M, no mask
2 Wen g ] e
- S R S —a—whole, gray, poy2 4
IR et DL LR LR T e R E e SRR e EE e P TP LEEE e LR EE R EREEEEREEEERREREEEEE R EGhCRE e L e R TSP T LR LR L e LR PR TE R T SEPEE PR CEEREEREREEEPR,
0 : . . : . . — :
0.0E+0 2.0E-05 4 0E-05 B6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04

FP f inspected window

J
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SVM—Choosing C

How to choose the C-vaue?

R A o
min>w]"+ca x

C-value penalizes points within the margin.

Large C-value can lead to poor generalization
performance (over-fitting).

From own experience in object detection tasks:

Find a kernel and C-values which give you zero errors on
the training set.

J
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SVM—Computation during Classification

In computer vision applications fast classification is usually
more important than fast training.

Two ways of computing the decision function f (x) :
N

a)w' F(x)+b D) é a. y.K(x,x.)+b Which oneisfaster?
=1

-For alinear kernel a)

-For apolynomial 2nd degree kernel:

Multiplicationsfor a): G =(n+2)n, where nisdim. of x

F ,poly2

Multiplications for b): G
-Gaussian kernel: only b) since dim. of F (x) iIS¥.

<.pay2 = (N+2)s, where sis nb. of sv's

J
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Learning Theory—Problem Formulation

From agiven set of training examples {x., y,} learn the
mapping X ® y. The learning machine is defined by a set of
possible mappingsx ® f(x,a) wherea isthe adjustable

parameter of f.
The goal isto minimize the expected risk R:

R@) =/ (f(x,a)y) dP(x,y)
V istheloss function
P isthe probability distribution function

We can't compute R(a ) since we don't know P(X, Y)

J
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Learning Theory —Empirical Risk Minimization

To solve the problem minimize the "empirical risk"
R,., over thetraining set:

Ree(@) =8 V(1 (5.2),y)

V istheloss function

Common loss functions:
V(f(x),y) =(y- f(x))° least squares
V(f(x),y) =(Q- yf(x)), hingeloss where (x), © max(x,0)

1
\Q- yf (x)

J
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Learning Theory & SVM

-

\

Bound on the expected risk:

For aloss function with O£V (

1- h,0£h £1 the following bound holds:

f (x), y) £1 with probability

+h- In( /4)

R@)£ R, @) +\/h|n(2N/h)
R (@) empirical risk

N number of training examples
h Vapnik Chervonenkis (VC) dimension

Keep all parameters in the bound fixed except one:
(1-h)- bound-, N- bound , h- bound -

N Bound is independant of the

orobablility distribution P(x, y).

J
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Learning Theory VC Dimension

The VC dimension is a property of the set of functions { f (a)}.

If for aset of N pointslabeled in all 2" possible ways
onecanfindanf 1 { f(a)} which separates the points correctly
one says that the set of pointsis shattered by { f (a)}.

The VC dimension is the maximum number of points

that can be shattered by { f (a)}.

The VC dimension of a functionsf :w'x+b=0in2 dim:

SNBNIA BRI BIDNY

J
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Learning Theory—SVM

The expected risk E(R) for the optimal hyperplanes:
E(D*/M?)

E(R) £

where the expectation is over all training sets of size N.
'Algorithms that maximize the margin have better generalization
5 performance.’

J
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Bounds

Most bounds on expected risk are very loose to
compute instead.

CrossValidation Error
Error on across validation set which is different
from the training set.

L eave-one-out Error

L eave one training example out of the training set,
train classifier and test on the example which was
left out. Do thisfor all examples.

For SVMs upper bounded by the # of support
Vectors.

J

Fall 2004 Pattern Recognition for Vision



Regularization Theory

Given N examples(xi,yi),xT R", yi {0,1 solve:

mln—a V(f)y

fTH N

)+a| f1,

where || f ||K isthe norm in a Reproducing Kernel

Hilbert Space (RKHS) H,with the reproducing kernel K,
g istheregularization parameter.

gl f ||f< can be interpreted as a smoothness constraint.

Under rather general conditions the solution can be written as:

F(0 =8 6K(xx)

*\% o

/\Jo o

\

—T—— Smooth

function

J
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Regularization—Reproducing Kernel Hilbert Space (RKHYS)
g
Reproducing Kernel Hilbert Space (RKHS) ‘H
f(x) = (K(xy), f()),,

Positive numbers | = and orthonormal set of

functionsf (x), (‘j_n (x)f .(x)dx =0 forn! m, and 1 otherwise:

Kx,y)° al.f.0)f (y), | arenonnegative eigenvaluesof K

f)=aaf, ), a =gfxf,xdx,

O

J' J'
||, =(fXx), X)), = ah/I

(f(x), f(), °

J
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Regularization—Simple Example of RKHS

Kernel is aone dimensional Gaussian with s =1:

K(x,y) =exp(- (x- y)*), X,y in [0,1]
write K (X, y) as Fourier expansion using
shift theorem:

K(X,y) = é | exp(j2pnx)exp(- jZpny) PeriodT =1

where|  are the Fourier coeff. of exp(- x°)

| = Aexp(- n*/2)

| decreases with higher frequencies (increasing n).
Thisisaproperty of most kernels. The regularization term:
I ()., = q a2/l . ,wherea_ arethe Fourier coeff. of f (X)

penalizes high freg. more than low freg. ® smoothness!

J
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Regularization—SVM

For the hinge loss function V (f (x),y) = (1- yf(x)), It can be
shown that the regularization problem isequivalent
to the SVM problem:
2
Tlv?ﬁlal @- y f(x)), +1|f],
Introduci ng slack variablesx. =1- y. f (x.) we can rewrite:

r!‘lugﬁax +1 |||, subjecttory, f(x )23 1- x,, andx, 3 0" |

It can be shown that thisis equivalent to the SVM problem (up to b) :

SVM: mlbnauwu +Cax C =1/(2I N)

subject to: y. (X! w+b)3 1- x,, x 30"]
- J

Fall 2004 Pattern Recognition for Vision




SVM—Summary

e SVMsare maximum margin classifiers.

« Only training points close to the boundary (support vectors) occur
In the SVM solution.

 The SVM problem is convex, the solution is global and unique.

o SVMscan handle non-separable data.

* Non-linear separation in the input space is possible by projecting
the data into a feature space.

 All calculations can be done in the input space (kernel trick).

o SVMsare known to perform well in high dimensional problems
with few examples.

e Depending on the kernel, SV M s can be slow during classification

« SVMsarebinary classifiers. Not efficient for problems with large
number of classes.

J
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Homework

Classification problem on the NIST handwritten
digits datainvolving PCA, LDA and SVMs.

PCA code will be posted today
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