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Introduction


Classification 

separation 

problems 

Two approaches: 

• Linear, non-linear 

• Two class, multi-class 

• Density estimation, classify with Bayes decision: 
Linear Discr. Analysis (LDA), Quadratic Discr. Analysis (QDA) 

• Without density estimation: Support Vector Machines (SVM) 
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x :  random vector 

:  class 

LDA Bayes Rule 

Bayes Rule 

p(x,w ) = p(x | w ) (w ) = P(w | )  ( )  �P x p x 

likelihood 
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LDA— Bayes Decision Rule


x
1Decide w1 if
P(w | )  

>  1;  otherwise w
P(w | )  2 x
2 

Likelihood Ratio 

p(x | w )  ( )  1 P w1 > 1 
P w2p(x | w )  ( ) 
2 

Log Likelihood Ratio 

ln  �
� p(x | w )  (  w ) 

�
� 

> 0,  ln  �
� p(x | w ) � � P( )  �1 P 1 1 

� + ln  � 
w1 

Ł p(x | w )  (  w ) Ł p(x | w ) Ł P( )  � > 0 
2 P 2 ł 2 ł w2 ł 

Fall 2004 Pattern Recognition for Vision 



LDA—Two Classes, Identical Covariance
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LDA—Two Classes, Identical Covariance
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LDA—Computation
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QDA—Two classes, different covariance matrix 

 (  ) 0  

(  )  ln  ln(  (  ))  ln  ln  

ln  ln  ln  = -

x Ax  w x  

= -

= S  

- a matrix 

- a vector 
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Quadratic Discriminant Analysis 
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� 

LDA Multiclass, Identical Covariance


Find the linear decision boundaries for k classes: 
For two classes we have: 

Tf (  )      = x w  + b decide w1 if f  (  ) 0  x x > 

In the multi-class case we have k  -1 decision functions:

 (  )  = x w1,2  + bf1,2  x T 
1,2 , 

Tf1,3 (  )  = x w  + b1,3,x 1,3  

Txf1,  k (  )  = x w1,  k + b1, k


� we have to determine (k -1)(  p +1) parameters,

p is dimension of x
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LDA Multiclass, Identical Covariance


1w 

2w 

X 

1m 
2m 

3m 

X ¢ 

3m ¢ 

1m ¢ 

2m ¢ 

1 1( )y m 

2 1( )y m 

1 2 

Find the  the 
best linear discrimination betw. the  classes. 

( | |...| ) 

also known as Fisher Linear Discriminant 

T 
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n 
k 

-

= 

 dimensional subspace that gives

y  w w  w  x  
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LDA—Multiclass, Identical Covariance


Computation 

·compute the d k matrix M = (m | m |...|m ) and cov. matrix S
1 2 k 

¢=G Tcompute the m ¢ : M  M  , S-1=G G  

compute the cov. matrix B¢ of m ¢ 

¢i ofcompute the eigenvectors v  B  ¢ ranked by eigenvalues 

calculate y by projecting x into X ¢ and then onto the eigenvector: 

¢T Ty = v x  w  i = G  v¢iG  �  i i 
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LDA—Fisher’s Approach


Find such 
in-class variance is maximized if the data is projected 
onto : 

max , the covariance of the ' s  

can be written as: 

max subject to 

T 

T 
T 

T 

T 

y 

m 

= 

= 
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w 

w x  

B MM 

w 

1 

1 
generalized eigenvalue problem, 

solution are the ranked eigenvectors of 
...same is an previous derivation. 
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=Sw 
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w  Bw 
w Sw 

w  Bw  
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The Coffee Problem: LDA vs. PCA


Image removed due to copyright considerations. See: R. Gutierrez-Osuna:
http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf 
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LDA/QDA—Summary


Advantages:

• LDA is the Bayes classifier for multivariate Gaussian 

distributions with common covariance. 
• LDA creates linear boundaries which are simple to compute.

• LDA can be used for representing multi-class data 

in low dimensions. 

• QDA is the Bayes classifier for multivariate Gaussian 
distributions. 

• QDA creates quadratic boundaries.


Problems: 
• LDA is based on a single prototype per class (class center) which 

is often insufficient in practice. 
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Variants of LDA


Nonparameteric LDA (Fukunaga)

removes the unimodal assumption by the scatter matrix 

using local information.

More than k-1 features can be extracted.


Orthonormal LDA (Okada&Tomita) computes projections 

that maximize separability and are pair-wise orthonormal.


Generalized LDA (Lowe)

Incorporates a cost function similar to Bayes Risk 

minimization.


….and many many more (see “Elements of Statistical 

Learning” Hastie, Tibshirani, Friedman)
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SVM—Linear, Separable (LS)


TFind the separating function f  (  )  = sign(  x w + b)
x i


which maximizes the margin M = 2d on the training data. 
� Maximum margin classifier. 
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SVM—Primal, (LS)


{ } { }1 1 

2 , 

Training data consists of  pairs  ( , ),..., ( , ) , -1,1 .  

The problem of maximizing the margin 2 can be formulated as: 

( ) 
max 2 subject to 

1 

N N i 

T 
i i 
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N y y y 
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y b d 
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¢ 

˛ 

¢ ¢� + ‡�
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¢ =��
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x x 

x w  
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, 

or alternatively:  / , / 
1 1

min subject to  ( ) 1, where
2 

T 
i ib 

d b b d  

y b d 

¢ ¢= = 

+ ‡ = 
w 

w w  

w x w  
w 

Convex optimization problem with quadratic objective function and 
linear constraints. 

¢w 
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SVM—Dual, (LS) 

2 

1 

Multiply constraint equations by positive Lagrange multipliers 
and subtract them from the objective function: 

1 
( ) 1
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SVM—Primal vs. Dual (LS) 


, 

1 1 1 1 

Primal: 

subject to:  ( ) 1
2 

Dual: 

1 
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i i i i  
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The primal has a dense inequality constraint for every point in the 
training set. The dual has a single dense equality constraint and a set 

rimal. 

min   

max  subject to:  0,  

i  i  

N  N  

i k i k i  k  
k  i  
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= =  
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of box constraints which makes it easier to solve than the p
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SVM—Optimality Conditions (LS) 

0,  
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 0 are support vectors. 
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SVM—Linear, non-separable (LNS)


f =x 

f =x 

1f = -x 

2d M= 

N
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SVM—Dual (LNS) 
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SVM—Optimality Conditions (LNS) 


f =x 
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SVM—Non-linear (NL)


Non-linear mapping: 
( )¢ = Fx x 

1x 

2x 

1x¢ 

2x ¢ 

Project into feature space, apply SVM procedure 

input space feature space 
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SVM—Kernel Trick


N N  N  
T¢ ¢ 
max. �a - 1 ��a a  y y x xki 

i=1 2 k =1 i =1 
i k i k i  

N 

subject to  0  £  £  C , �a y = 0a i i i  
i =1 

Only the inner product of the samples appears in the objective 

T, )  = x xfunction. If we can write: K (x x  ¢ ¢ki k i 

we can avoid any computations in the feature space. 

¢TThe solution f (x¢) = x w + b can be written as: 
N N


T
f (  )  = �a y F(  )  F(x ) + = �a y K (x x ) + bx i i  x i b i i  , i

i=1 i=1


y x¢.using w = �ai i i  
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SVM—Kernels


2 

When is a Kernel  ( , ) an inner product in a Hilbert space? 

( , ) ( )  

with positive coefficients 

if for any ( )  

0 Mercer's condition 

Some examples of commonly used 
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 kernels: 
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Polynomial kernel: ) 
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 exp(  ), shift invar. 

 tanh(  
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, , 2 , ,  , , 2 , , )  

, , 2 , , )  
Shift invariant kernel

T 

T 

T 

K 

u v u v u v u v u v u v  

u v v v v  

x x x x  
K K 

= + ˛ 

= + + + + + 

= 

F = 
= 

u v  

x 
u v  

� 

0 

2 

22 2 

0 

2 2 

0 

( ) 

defined on be written 
as the Fourier series of  : 

1 1 
, ( ) 

( ) ([ , ] )k k 

d 

j ktj kt j kt 
T T T 

k k 
k k 

j j d 
k k 

k 

L T 
K 

e e e
T T 

K e e Z 

pp p 

p p 

l l 

l 

¥ ¥ -

=-¥ =-¥ 

¥ 
-

= 

-

= - = 

- = " ˛ -¥ ¥  

� � 

� k v  

u v  

k 

SVM—Polynomial Kernel 
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SVM—Uniqueness 


1x 

2x 

1-

1-

1+ 

1+ 
w 

1 

two solutions: 
(0.25,0.25,0.25,0.25) 

(0.5,0.5,0,0) 
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i i i  
i 
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a 
a 

a a 
= 

= 
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‡ =� 

w 
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Are the i 

N 
T 

i i i  
i 

f y b 

a 

a 
= 

= +�x x x  1x2x 

3x 4x 

= +1y 

More important: is the solution e? 
Yes, the solution is unique and global 
if the objective function is strictly convex. 

f x 

(1,  0) 

constraints:  0,  

 in the solution unique? No

 (  )  

 (  ) uniqu
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SVM—Multiclass


A 

A or B or C or D 

C DB 

A or B C or D 

Training: k (k
Classification : k

A 

B A,C,D 

C A,B,D 

D A,B,C 

1 vs. All 

B,C,D 

Training: k 
Classification : k 

Bottom-Up 1vs1 

-1) / 2 
-1 
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SVM—Choosing the Kernel


How to choose the kernel?


Linear SVMs are simple to compute, fast at 
runtime but often not sufficient for complex tasks. 

SVM with Gaussian kernels showed excellent 
performance in many applications (after some 
tuning of sigma). Slow at run-time. 

Polynomial with 2nd are commonly used in 
computer vision applications. Good trade off 
between classification performance computational 
complexity. 
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SVM—Example 

Face detection with linear and 2nd degree polyn. SVM & LDA 
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SVM—Choosing C


How to choose the C

N
2 

, 
i=1 

1 
+ 

2 ib 
C x� w 

w 

C

Large C

From own experience in object detection tasks: 
Find a kernel and C
the training set. 

-value? 

min  

-value penalizes points within the margin. 

-value can lead to poor generalization 
performance (over-fitting). 

-values which give you zero errors on 
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SVM—Computation during Classification


In computer vision applications fast classification is usually 
more important than fast training. 

Two ways of computing the decision function f (  ) :  x 
N 

a) wT F(  )    + b b) �a y  K  (x x ) + b Which one is faster?x i i , i 
i=1 

-For a linear kernel a) 


-For a polynomial 2nd degree kernel:

Multiplications for a): GF , poly2 = (n + 2)  , where n is dim. of x
n 

Multiplications for b): GK  poly 2 = (n + 2)  , where s is nb. of sv'ss , 

-Gaussian kernel: only b)  since dim. of F (  ) is ¥.x 
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Learning Theory—Problem Formulation


From a given set of training examples {x , yi} learn the i 

mapping x fi y . The learning machine is defined by a set of 
possible mappings x fi f (x,a ) where a is the adjustable 

parameter of f . 
The goal is to minimize the expected risk R : 

R (  )  = �V ( f (x,a ),  y ) d P  (  , ) 
a x y 

V is the loss function

P  is the probability distribution function 

We can't compute R  (  ) since we don't know P (x, y )
a 

Fall 2004 Pattern Recognition for Vision 



Learning Theory –Empirical Risk Minimization


1 

To solve the problem minimize the "empirical risk"

1 
( ( ,  

is the loss function 

emp 

N 

i i 
i 

R 

R V f y
N 

V 

a a 
= 

= � x 

2 

Common loss functions:

 ( ) ( 
( ) 

V f y y f  
V f y x x+ + 

= -
= - ” 

x x 
x x 

1 
1 ( )yf x 

 over the training set :  

(  )  ), )emp  

(  ),  (  ))  least squares
(  ),  (1  (  ))  hinge loss where (  )  max(  ,  0) yf  
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Learning Theory & SVM 

Bound on the expected risk: 

( ) 1 with probability 
1 1 the following bound holds: 

/ ) / 4)
( )  

number of training examples
 Vapnik Chervonenkis (VC 

emp 

emp 

V f y 

h N h h
R R 

N 
R 

N 
h 

h h 

h 
a a 

a 

£ £ 
- £ £  

+ -
£ + 

x 

) dimension 

Keep all parameters in the bound fixed except one: 

) , , boundN hh- › › › fl  › › 

Bound is independant of the 
probablility distribution  ( , ).P yx 

For a loss function with 0  (  ),  
,  0  

ln(2  ln(  
(  )  

(  ) empirical risk

(1  bound   bound  
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Learning Theory VC Dimension


{ }The VC dimension is a property of the set of functions

If for a set of  points labeled in all 2  possible ways 

one can find an ( )  which separates the points correctly 

one says that the set of 

N 

f 

N 

f f 

a 

a˛ 

points is shattered by

that can be shattered by

f 

f 

a 

a 

The VC dimension of a functions  : 0 in 2 dim:Tf b+ =w x  

{ } 

 (  ) .  

{ } 

{ } 

 (  ) .  

The VC dimension is the maximum number of points 

 (  ) .  
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Learning Theory—SVM 


2 2 

The expected risk

( / )
( )  

. 
'Algorithms that maximize the margin have better generalization 
performance.' 

E R  

E R  
N 

N 

£ 

1MD 

 (  ) for the optimal hyperplanes: 

where the expectation is over all training sets of size

E D M  
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Bounds


Most bounds on expected risk are very loose to 
compute instead: 

Cross Validation Error

Error on a cross validation set which is different 
from the training set. 

Leave-one-out Error

Leave one training example out of the training set, 

train classifier and test on the example which was 

left out. Do this for all examples.

For SVMs upper bounded by the # of support 

vectors.
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Regularization Theory


2 

1 

2 

Given , , 

1 
( (  ), )  

where 

Hilbert Space (RKHS) ng kernel  ,
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 Reproducing Kernel Hilbert Space (RKHS) 
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Regularization—Reproducing Kernel Hilbert Space (RKHS)
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Regularization—Simple Example of RKHS  

Kernel is a one dimensional Gaussian with 
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Regularization—SVM 


2 

1 

For the hinge loss function ) 

to the SVM problem: 

1 
( )) 

introducing slack variables  1 ( ) 

N 

i i Kf 
i 

i i i 

y yf 

f 
N 

y f  

l 

x 

+ 

+˛ 
= 

= -

- + 

= -

� 

x x 

x 

x 

H 

2 

1 

2 

, 
1 

we can rewrite: 

1 
( )  1 0 

It can be shown that this is equivalent to the SVM problem (up to ) :  

1
SVM: + )

2 

subject to: 

N 

i i i i iKf 
i 

N 

ib 
i 

i 

f i 
N 

b 

C C N 

y 

x l x x 

x l 

˛ 
= 

= 

+ ‡ - ‡ "  

= 

� 

� w 

x 

w 

H 

( ) 1 , 0T 
i i ib ix x- ‡ "x w  

 (  (  ),  (1  (  ))  it can be 

shown that the regularization problem is equivalent 

min  (1  

V  f  

y f  

min  ,  subject to: ,  and 

 min   1/(2  

y f  

+  ‡

Fall 2004 Pattern Recognition for Vision 



SVM—Summary


•	 SVMs are maximum margin classifiers. 

•	 Only training points close to the boundary (support vectors) occur 

in the SVM solution. 
•	 The SVM problem is convex, the solution is global and unique.

•	 SVMs can handle non-separable data. 
•	 Non-linear separation in the input space is possible by projecting 

the data into a feature space. 
•	 All calculations can be done in the input space (kernel trick). 

•	 SVMs are known to perform well in high dimensional problems 

with few examples. 
•	 Depending on the kernel, SVMs can be slow during classification

•	 SVMs are binary classifiers. Not efficient for problems with large 

number of classes. 

Fall 2004	 Pattern Recognition for Vision 



Literature


T. Hastie, R. Tibshirani, J. Friedman: The Elements of 
Statistical Learning, Springer, 2001: 
LDA, QDA, extensions to LDA, SVM & Regularization. 

C. Burges: A Tutorial on SVM for Pattern Recognition, 
1999: Learning Theory, SVM. 

R. Rifkin: Everything Old is New again: A fresh
Look at Historical Approaches in Machine Learning, 
2002: SVM training, SVM multiclass. 

T. Evgeniou, M. Pontil, T. Poggio: Regularization 
Networks and SVMs, 1999: SVM & Regularization. 

V. Vapnik: The Nature of Statistical Learning, 1995: 
Statistical learning theory, SVM. 

Fall 2004 Pattern Recognition for Vision 



Homework


Classification problem on the NIST handwritten 
digits data involving PCA, LDA and SVMs. 

PCA code will be posted today 
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