9.913 Pattern Recognition for Vision

Class 8-2 – An Application of Clustering

Bernd Heisele

Overview

- •Problem
- Background
- •Clustering for Tracking
- •Examples
- •Literature
- •Homework

Problem

Detect objects on the road: Cars, trucks, motorbikes, pedestrians.

Image Motion

Determine the image motion (vector field)

$$\mathbf{v}(x,y) = (u(x,y),v(x,y))^T.$$

Object Segmentation using Image Motion

Motion-based segmentation

Image Motion—Equations for Rigid Motion

Image Motion—Estimation Optical Flow

Image intensity over time is f(x, y, t)

The intensity of a point over time is given by:

g(t) = f(x(t), y(t), t), where x(t), y(t) is the trajectory of the point in the image plane.

Assume the intensity of the point does not change over time:

$$\frac{dg(t)}{dt} = 0 \Rightarrow \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial t} = 0$$

$$\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}\right) = (u, v), \quad (u, v)\nabla f + f_t = 0$$

Image Motion—Estimation Optical Flow

Gradient equation of optical flow:

$$\frac{\partial f}{\partial x}u + \frac{\partial f}{\partial y}v + \frac{\partial f}{\partial t} = 0$$

Image Motion—Estimation problems

Aperture Problem

No change over time, optical flow=?

Object Segmentation Problem

To determine the image motion we have to know what the objects are, i.e. which points belong together.

However, we can't extract objects without motion.

An Idea

Are there methods that help us to determine the image motion (avoid the aperture problem)?

Neighbored pixels of similar color belong to the same object \Rightarrow color segmentation.

Objects usually consist of several regions of different color \Rightarrow color segmentation alone does not solve the problem, we still need motion.

Color Segmentation & Motion

Fall 2002

Color Segmentation & Motion, why it did not work

Color regions are not stable over time, they merge & break apart which makes tracking extremely difficult.

Need consistent color segmentation over time!

Color Cluster Flow

Fall 2002 Pattern Recognition for Vision

Color/Position Clustering

Original Image

Boundaries of Clusters

Each pixel is represented by a its color/positoin features (R, G, B, wx, wy), where w is a constant. Clustering is applied to group pixels with similar color and position.

Color versus Position

Cluserting in (R, G, B, wx, wy)

For large w the clusters are compact (Voronoi tesselation). For small w the color dominates and the clusters lose their spatial connectivity.

Fall 2002

Clustering of Consecutive Images with *k*-means

Parallel k-means Clustering

1. Partitioning step in iteration *k* :

$$C_q(k) = \left\{ \mathbf{s}_n \mid \left\| \mathbf{s}_n - \mathbf{r}_q(k-1) \right\|^2 \le \left\| \mathbf{s}_n - \mathbf{r}_i(k-1) \right\|^2 \, \forall i \ne q \right\}$$

 C_q : cluster q, \mathbf{s}_n : data point n, \mathbf{r}_q : prototype of cluster q

2. Computing prototypes in iteration k:

$$\mathbf{r}_{q}(k) = \frac{1}{S_{q}(k)} \sum_{\mathbf{s}_{i} \in C_{q}(k)} \mathbf{s}_{i}$$
 S_{q} : data points in cluster q

k-means leads to a local minimum of the quantization error

$$mse = \frac{1}{N} \sum_{i=1}^{N} \left\| \mathbf{s}_{i} - \mathbf{r}_{q(i)} \right\|^{2}, \quad \mathbf{r}_{q(i)} = \arg\min_{1 \le n \le Q} \left\| \mathbf{s}_{i} - \mathbf{r}_{n} \right\|^{2}$$

Fast parallel k-means Clustering

Q-1 circles around each \mathbf{r}_m with diameters $d_n = \|\mathbf{r}_m - \mathbf{r}_n\|$ check if \mathbf{s}_i are inside the circles.

Initial Clustering

Clustering of the first image of a sequence

K-means is not a good choice for the first image because we don't know a good initialization of the cluster centers.

- many iterations required (slow)
- could lead to a 'bad' local minimum (large mse)

We need a fast algorithm which doesn't require initialization.

Divisive clustering (tree-based clustering)

Initial Clustering

Initial Clustering

- -Use *mse* bound or max. number of clusters as stop criteria.
- -The cluster centers of the leafs initialize *k*-means of the next image.

Examples

First Image of Sequence

Last Image of Sequence

Trajectories of Cluster Centroids

Fall 2002

Not Perfect

Clusters 'jump' when objects appear or leave the scene.
(Number of clusters if fixed)

Over-segmentation and spurious motion in homogenous regions

Literature

B. Heisele, U. Kressel, and W. Ritter. Tracking non-rigid, moving objects based on color cluster flow. Proc. Computer Vision and Pattern Recognition (CVPR), pp. 253-257, San Juan, 1997.

Clustering Classics:

J. MacQueen.

Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Mathematics, Statistics and Probablility, pp. 281-297, 1967.

Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, COM-28/1, pp. 84-95, 1980.

Fall 2002