10.302 Fall 2004 <u>QUIZ</u> Tuesday, September 21, 2004

The steady-state, one-dimensional temperature distribution in a composite wall, made of slabs of three different solid materials, is shown below. Each material has a constant, but different, thermal conductivity k. The heat fluxes q" within each material are indicated in the diagram.

- a) What is the relative magnitude of q_B" and q_C"?
- b) How does qa" vary with distance?
- c) What is the relative magnitude of q_A " and q_B " at position 2?
- d) What is the relative magnitude of k_B and k_C?
- e) What is the relative magnitude of k_A and k_B?
- f) Sketch a plot of q" versus x labeling the positions 1, 2, 3, and 4 and showing q_A ", q_B " and q_C ".
- g) What is likely to be to the left of position x? What else might be there?
- h) The region to the right of slab c is a fluid with heat transfer coefficient h and temperature far from position 4 of T_{∞} . Write an expression relating surface temperature T_4 , T_{∞} , k_C , and $\frac{dT}{dx}$ in slab c.