
10.34: Numerical Methods Applied to Chemical Engineering
Prof. K. Beers

Solutions to Problem Set 4: Matrix Eigenvalue Analysis
Mark Styczynski, Ben Wang

1.(1 point) 3.A.1 From Gershorgin’s theorem, derive lower and upper bounds on the

possible eigenvalues of the matrix
1 0 3
0 2 1
3 1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

The first thing we note is that A is symmetric; that is, AT = A. That means that A is also
Hermetian, because AH = AT if all values in A are real. We know that a Hermetian matrix
has all real eigenvalues.

From Gershorgin’s theorem, we know that the eigenvalues will be located somewhere
“near” the main diagonal elements:

1,

N

kk kj
j
j k

a aλ
=
≠

− ≤∑

If complex eigenvalues were possible, this would denote a circle around the diagonal
elements. Since we know that the eigenvalues are purely real, that means that they can
only be in intervals surrounding each diagonal element, where the half-width of the
interval around some diagonal element is equal to the sum of off-diagonal elements in
that row. So we look at the three rows in turn to define:

()

11

22

33

1 0 3

2 0 1

1 3

a

a

a

λ λ

λ λ

λ λ

− = − ≤ +

− = − ≤ +

− = − − ≤ + 1

So that means that the eigenvalues lie in the bounds
[] [] []2, 4 , 1,3 , 5,3− −
So, you can say that all eigenvalues must fall between the lower bound of -2 and the
upper bound of 4, the lower bound of 1 and the upper bound of 3, or the lower bound of
-5 and the upper bound of 3. However, that statement seems somewhat odd due to the
significant overlap of the intervals.
We can instead note that the union of these intervals is actually one interval, defined as
[]5, 4−
So, all eigenvalues for A must fall in the above interval, making -5 the lower bound and 4
the upper bound.

Grading:
(-0.5 point): no discussion of the matrix being symmetric
(-0.25 point): missing total range of eigenvalues
(-0.25 point): mention of why the eigenvalues must be real

2. (3 points) 3.A.2 Compute by hand the eigenvalues and eigenvectors of (3.269), and
check your results using Matlab.

The eigenvalues are defined as the solutions of

[] []k k
kAw wλ= ,

which can be restated as
() [] 0k

kA I wλ− = or ()det 0kA Iλ− =

So we set up the matrix ()kA Iλ− , which is

1 0 3
0 2 1
3 1 1

λ
λ

λ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

We take this determinant and find that

()()() ()()() ()()()
1 0 3

0 2 1 1 2 1 1 1 1 3 2 3
3 1 1

λ
λ λ λ λ λ λ

λ

−
− = − − − − − − + −⎡ ⎤ ⎡⎣ ⎦ ⎣

− −
0=⎤⎦

(I have already canceled zero terms for simplicity.) This reduces to
[]3 2

3 2

3 2

2 2 1 18 9

2 2 1 18 9
2 11 21 0

λ λ λ λ λ

λ λ λ λ λ

λ λ λ

⎡ ⎤− + + − − − + − =⎣ ⎦
− + + − − + − + =

− + + − =

We note that there is no immediately obvious solution, and trying the integer values in
our interval gives us nothing, so we go back to the good old TI-85 or Matlab or
Mathematica or whatever else you prefer, and we find that the roots are

1 2 33.4211, 3.2880, 1.8669λ λ λ= = − =
We can then use these eigenvalues to find the eigenvectors. We go back to one of our
initial equations, that
() [] 0k

kA I wλ− =
So we plug in each eigenvalue λk and solve for the eigenvector w[k]. We’ll set up our
augmented matrix as such:
1 0 3

0 2 1 0
3 1 1

k

k

k

λ
λ

λ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

0

0

Since we’re solving for the null space, and we know there are no repeated eigenvalues,
we can just say that two of these equations are linearly independent. You can solve for
this null space any way you like; I’ll do the way I know.
() []

() []
1 3

2 3

1 3

2 0

k
k

k
k

w w

w w

λ

λ

− +

− + =

0=

I move the “free variable” over to the right side of the equation and define it as a
constant, s. Note that you could just define it as 1… but if you were finding a null space

with dimension two, it would not be a good idea to define two variables as two numerical
constants… you would lose track of which entry contained which “constant” and your
eigenvectors would be hosed. So, I’m sticking with s.

() []

() []
1

2

1 3

2

k
k

k
k

w s

w s

λ

λ

− =

− =

−

−

And then
[]

()
[]

()

1

2

3
1

2

k

k

k

k

sw

sw

λ

λ

−
=

−

−
=

−

So we can say that

[]

[]

[]

[]

1

2

3

3 3
1 1

1
2 2

1

k k k

k k

k kk

s

w
sw w s

w s

λ λ

λ λ

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎡ ⎤ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ − −⎢ ⎥ ⎢ ⎥
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

This means that for each valid eigenvalue, we will get a distinct eigenvector. Plugging in
our valid eigenvalues, we get

[] [] []1 2 3

1.2391 0.6996 3.4607
0.7037 , 0.1891 , 7.5131

1 1
w w w

−⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= = − = −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ 1

⎤
⎥
⎥
⎥⎦

Wonderful. These can also be normalized by dividing by their magnitudes to yield

[] [] []1 2 3

0.7118 0.5665 0.4153
0.4042 , 0.1531 , 0.9017
0.5744 0.8097 0.1200

w w w
−⎡ ⎤ ⎡ ⎤ ⎡

⎢ ⎥ ⎢ ⎥ ⎢= = − = −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

Normalizing is particularly useful because Matlab will return its eigenvectors in unit
magnitude. Note that multiplying any of the eigenvectors by a constant still gives an
eigenvector, meaning that our normalization is OK and it’s OK if an entire vector is off
by a factor of -1. Matlab tells us:

eigenvectors =

 -0.5665 -0.4153 -0.7118
 -0.1531 0.9018 -0.4042
 0.8097 -0.1200 -0.5744

eigenvalues =

 -3.2880 0 0
 0 1.8669 0
 0 0 3.4211

Great.

Grading:
(up to -1 point): Clear writeup linking equations and concepts
(-1 point): No eigenvectors calculated by hand
(-1 point): No eigenvectors calculated by Matlab
(-0.5 point): No eigenvalues calculated by hand
(-0.5 point): No eigenvalues calculated by Matlab
(-1 point): Didn’t compare to or properly reconcile hand-calculated results with those of
Matlab

3. (3 points) 3.A.3 Consider the following matrices,

0 1 2 1
6 2 1 0 1 0

1 2 0 4 3 2
, 0 5 1 , , 1 0 0

2 0 3 0 1 1
1 3 2 0 0 1

1 4 0 1

A B C D

− −⎡ ⎤
−⎡ ⎤ ⎡ ⎤⎢ ⎥− ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = − = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎣ ⎦

(a) Without computing the actual eigenvalues, can you tell if any of the matrices above
must have all real eigenvalues? Explain why you make this judgment.

All of the matrices are real, which is convenient. That means that if a matrix is
symmetric, it is guaranteed to have all real eigenvalues; otherwise, we can make no
guarantees. Clearly, only matrix A is symmetric, so matrix A has all real eigenvalues.

(b) For each of those guaranteed to have all real eigenvalues, provide an upper and
lower bounds on the eigenvalues.

We can use Gershorgin’s theorem to determine an upper and lower bounds on the
eigenvalues for A. Using the same reasoning as in the first problem, namely that

1,

N

kk kj
j
j k

a aλ
=
≠

− ≤∑

we can say that the bounds for the eigenvalues are:
[] [] [] []4, 4 , 3,7 , 1,5 , 6, 4− − −
Since these bounds have significant overlap, we can condense them to say that all
eigenvalues will fall in the range
[]6,7−

(c) Show that D is unitary.

A unitary matrix meets the requirement that DH = D-1. Since this is a strictly real matrix,
this is the same as saying DT = D-1. So, when we multiply out DDT, it should be the same
as DD-1, which should yield the identity matrix. Actually doing the multiplication, we
see that

0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1

−⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

So D is indeed unitary.

(d) Compute by hand the eigenvalues and unit-length eigenvectors of C.

OK, we use the equations from the second problem again, namely

()det 0kA Iλ− =
So, that means

()() 23 2
3 1 2 2

1 1
λ

λ λ λ λ
λ

−
= − − − − = − −

− −
5

The solution for this characteristic equation can be found using the quadratic formula,

() ()()22

1 2

2 2 4 14
2 2

3.4495, 1.4495

b b ac
a

λ λ

± − − −− ± −
=

= = −

5

Again, we know that there will be one independent equation for each eigenvalue. So we
say
() [] []

() [] []

() []

[]

()

[]

[] []

[] []

1 2

1 2

1

1

1 2

1 2

3 2 0

3 2

3 2
2

3

2 2
3 3

1

4.4494 0.4495
,

1 1

0.9757 0.4100
,

0.2193 0.9121

k k
k

k k
k

k
k

k

k

k
k k

w w

w w

w s
sw

s
w s

s

w w

w w

λ

λ

λ

λ

λ λ

− + =

− = −

− = −

−
=

−

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

−⎡ ⎤ ⎡
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦
⎤
⎥
⎦

And Matlab agrees with these latter normalized eigenvectors.

Grading:
Part a: 0.5 point

Part b: 0.5 point
Part c: 0.5 point
Part d: 0.5 point for eigenvalues, 0.5 point for eigenvectors, 0.5 point for normalization

4.(3 points) 3.B.2 Consider the positive-definite matrix A, obtained by discretizing the
Poisson equation 2 fϕ =−∇ in d dimensions on a hypercube grid of Nd points, with the
following non-zero elements in each row for 1jxΔ = ,

2kkA d=
,

1mk k N
A

±
= − 0,1, , 1m d= −…

Plot as functions of N the largest and smallest eigenvalues and the condition number for
d = 1,2,3. For d = 3, extend the calculation to relatively large values of N by not storing
the matrix (even in sparse format) but rather by merely supplying a routine that returns
Av given an input value of v.

The actual derivation of the matrix is not asked for; I’ll only give a brief discussion of it
here. We have seen the one-dimensional finite difference method, and hopefully it makes
sense to you. The same thing can be done for multiple dimensions by making a grid of
higher dimensions. In this case, the value of each grid point is dependent not only upon
its neighbors in the x direction, but also on the neighbors in the y direction and/or the z
direction (depending on the dimensionality of the approximation). So you’ll have Nd grid
points in total… N in each direction. This means you have Nd unknowns, but also Nd
equations. That means that you can form an Nd x Nd matrix to represent all of our
equations and unknowns, no matter what the value of d is.

Now, once you have all of these points that are being represented in one matrix, you need
a way to keep track of where they came from… for instance, what grid point does the
105th column in the finite difference matrix represent? You can do this by keeping track
of the grid points in an orderly fashion. This is where the equations that the problem
gives come in. There is one way of representing these grid points where the relevant off-
diagonal elements are defined by for row k. mk N±

In addition, the Poisson equation as given to you is equivalent to (assuming Cartesian
coordinates):

2

2
dim dimall

fϕ∂
=

∂∑

Where the values of dim may be x, y, z, etc.

But you don’t need to know that to solve this problem. All you need to do is get that
matrix into Matlab in sparse form and calculate the eigenvectors, eigenvalues, and
condition numbers for varying N and d. For d = 1,2, this is extremely simple and is
shown below. For d = 3, the problem asks you to not store the matrix, but rather to be
able to calculate Av given some v. This is useful because Matlab (via eigs()) can use this
function to iteratively determine the eigenvalues you are looking for via the power
method described in class and in the text starting on page 181. That function is included
after the main program.

The only real equation of relevance for this problem is the condition number:
max

min

λ
κ

λ
=

Given that, the program is relatively straight-forward. Note the advice that was given in
an email to the class: try to use the sigma value of ‘BE’ when calling eigs(), and make
sure you accept both the eigenvectors and eigenvalues for that call, otherwise you will get
incorrect answers.

% Mark Styczynski
% 10.34
% Homework 4
% Problem 4, P 3.B.2

clear all; close all;

% First we set up some options that we'll pass to eigs so that it
% knows just how simple of a matrix we are giving it. This will
% significantly help convergence.
opts.disp = 0;
opts.issym = 1;

% PDL> Set up values that N can take.
Nvec = [linspace(2,40,39) 50 60 70 80 90 100];

% PDL> Solve for d = 1, storing the matrix and then calculating
% the eigenvalues using eigs()
for i=1:length(Nvec),
 N = Nvec(i)
 delPhi = spalloc(N,N,3*N);
 for k=1:N,
 if (k>1)
 delPhi(k,k-1) = -1;
 end
 delPhi(k,k) = 2;
 if (k<N)
 delPhi(k,k+1) = -1;
 end
 end

 % PDL> Store the data that we get at each stop for plotting later.
 [useless, eigMat] = eigs(delPhi,2,'BE',opts);
 dim1Small(i) = eigMat(1,1);
 dim1Large(i) = eigMat(2,2);
 dim1CondNum(i) = dim1Large(i)/dim1Small(i);
 % We keep the even ones because we like the prettier picture
 % we get when we plot them.
 if mod(i,2) == 0
 dim1SmallEven(i/2) = eigMat(1,1);
 dim1LargeEven(i/2) = eigMat(2,2);
 dim1CondNumEven(i/2) = eigMat(2,2)/eigMat(1,1);
 NvecEven(i/2) = N;
 end

end

% PDL> Solve for d = 2, storing the matrix and then calculating
% the eigenvalues using eigs()

for i=1:length(Nvec),
 N = Nvec(i)
 delPhi2D = spalloc(N^2,N^2,5*N^2);
 for k=1:N^2,
 if (k>N)
 delPhi2D(k,k-N) = -1;
 end
 if (k>1)
 delPhi2D(k,k-1) = -1;
 end
 delPhi2D(k,k) = 4;
 if (k<N^2)
 delPhi2D(k,k+1) = -1;
 end
 if (k < N^2 - N + 1)
 delPhi2D(k,k+N) = -1;
 end
 end
 % PDL> Store the data that we get at each stop for plotting later.
 [useless, eigMat] = eigs(delPhi2D,2,'BE',opts);
 dim2Large(i) = eigMat(2,2);
 dim2Small(i) = eigMat(1,1);
 dim2CondNum(i) = dim2Large(i)/dim2Small(i);
 if mod(i,2) == 0
 dim2SmallEven(i/2) = eigMat(1,1);
 dim2LargeEven(i/2) = eigMat(2,2);
 dim2CondNumEven(i/2) = eigMat(2,2)/eigMat(1,1);
 end
end

%PDL> Solve for d = 3, but this time not storing the matrix. We'll
% use a separate function to calculate Av given v.
Nvec2 = linspace(2,20,10);
for i=1:length(Nvec2),
 N = Nvec2(i)
 [useless, eigMat] = eigs('marksty_calc_Av_3D',N^3,2,'BE',opts);
 dim3Small(i) = eigMat(1,1);
 dim3Large(i) = eigMat(2,2);
 dim3CondNum(i) = dim3Large(i)/dim3Small(i);
end

% PDL> Plot and label graphs.
figure(1)
plot(Nvec,dim1Large,'--')
hold on
plot(Nvec,dim1Small)
plot(Nvec,dim2Large,'-.')
plot(Nvec,dim2Small,'.')
xlabel('Number of grid points per dimension')
ylabel('Eigenvalue')

legend('Largest, d=1','Smallest, d=1','Largest, d=2','Smallest,
d=2',...
 'Location','Best');
title('FD approximation of the Poisson equation: Problem 3.B.2')
hold off

figure(2)
plot(NvecEven,dim1LargeEven,'--')
hold on
plot(NvecEven,dim1SmallEven)
plot(NvecEven,dim2LargeEven,'-.')
plot(NvecEven,dim2SmallEven,'.')
xlabel('Number of grid points per dimension')
ylabel('Eigenvalue')
legend('Largest, d=1','Smallest, d=1','Largest, d=2','Smallest,
d=2',...
 'Location','Best');
title('FD approximation of the Poisson equation, only even N: Problem
3.B.2')
hold off

figure(3)
plot(Nvec2,dim3Large,'--')
hold on
plot(Nvec2,dim3Small)
xlabel('Number of grid points per dimension')
ylabel('Eigenvalue')
legend('Largest eigenvalue','Smallest eigenvalue','Location','Best');
title('FD approximation of the Poisson equation, d=3, even N: Problem
3.B.2')
hold off

figure(4)
plot(Nvec,dim1CondNum)
hold on
plot(Nvec,dim2CondNum,'--')
xlabel('Number of grid points per dimension')
ylabel('Condition number')
legend('d = 1','d = 2','Location','Best')
title('Condition numbers for a large range of N for the Poisson
equation: Problem 3.B.2')
hold off

figure(5)
plot(Nvec(1:19),dim1CondNum(1:19))
hold on
plot(Nvec(1:19),dim2CondNum(1:19),'--')
plot(Nvec2,dim3CondNum,'-.')
xlabel('Number of grid points per dimension')
ylabel('Condition number')
legend('d = 1','d = 2','d = 3','Location','Best')
title('Condition numbers for small N for the Poisson equation: Problem
3.B.2')
hold off

function Av = marksty_calc_Av_3D(v)

% Input: any one-dimensional vector v
% Output: a vector Av the same size as v

% PDL> Calculate values of N, N^2, and N^3.
vecSize = length(v);
N = round(vecSize^(1/3));
Nsq = round(N^2);
Ncu = vecSize;

% PDL> Figure out all of the special cases... subtract values
% as appropriate.

% We note that we would like to just implement the equation as shown
% in the text, but in some cases that would entail using values
% outside of the vector bounds. (For example, if we're on row
% 1, then we can't use the value from 1-N.) So, we just make
% sure we're doing something legitimate every step along the way.
for k=1:vecSize
 Av(k) = 0;
 if k > Nsq
 Av(k) = Av(k) - v(k - Nsq);
 end
 if k > N
 Av(k) = Av(k) - v(k - N);
 end
 if k > 1
 Av(k) = Av(k) - v(k - 1);
 end
 Av(k) = Av(k) + 6*v(k);
 if k < Ncu
 Av(k) = Av(k) - v(k + 1);
 end
 if (k < Ncu - N + 1)
 Av(k) = Av(k) - v(k + N);
 end
 if (k < Ncu - Nsq + 1)
 Av(k) = Av(k) - v(k + Nsq);
 end
end

So here are the graphs. We note that for higher dimensions, the highest eigenvalue
displays a “sawtooth”-type pattern when both odd and even values are used for low
values of N. This is somewhat intuitive, as the switch between odd and even number of
grid points in such a coarse approximation may significantly change the character of the
solution. (They are representing significantly different points.) On the other hand,
steadily increasing in only even values or only odd values of N will only be a refinement
of the system and won’t drastically change anything. Both graphs are correct; they are
both included for completeness.

Grading:
1 point each for the cases of d=1,2,3
(-0.25 point): Not calculating and plotting condition number
Credit was not given for d=3 if you stored the matrix A… you had to make a function
that returned Av in order to get credit.

