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Problem 1: 4.A.1 

Note: there is a slight typo in the assignment.  We define x1 = x and x2 = y. 

You are asked to derive the linear ODE system that describes the response of a 
system to small perturbations around the steady-state.  The system is described 
by a system of ODEs 

x & = f ( )x (1) 

f ( )sx = 0 (2) 

A perturbation around the steady state can be written as 

( )t x = x s +ε (t ) (3) 

Since close to the steady state, the value of f(xs) ≈ 0, we can write f(x) as a 
Taylor series expansion. 

f ( ) ≈ f ( )+
 f d 

x x s  xd
 


 
[x − x ]+ ... (4)s 

xs  

Neglecting terms higher than second order, we are left with a linearized equation. 
Plugging equation (4) and (3) into equation (1): 

& xx & +ε = f ( )+
 f d 

s s  xd
 


 
[x − x ] (5)s 

xs  

Both x &  and f (x ) are equal to 0 and [x − x ] is equal to ε. So we are left with thes s s 

linear ODE system that describes the response to a small perturbation: 



 
 f d 

ε ε & (6)
=  xd 
xs  

or to be written as: 

ε & = J ε	 (7)
xs 

where the J is the Jacobian. For our problem with the equations: 

&x 
&y 
= f 1(x , y ) = −	2(x − )(1 y − 2)2 + (x − )(1 y − 2) − ( y − 2) − 3(x − 1)  (8) 

(x 1)= f 2 (x , y ) = + − − (x − 1)2 ( y − 2)	  (9) 

The Jacobian for our system will be: 

2− 2(y − 2) + ( y − 2) − 3 − 4(x − )(1 y − 2) + (x − − 11)
 (10)

1 
J = 

 + − 2(x − )(1 y − 2) (x − 1)2 

 

( 2 ,1 ) 

plugging in these numbers the Jacobian will be 

− 3 − 1J = 
− 1 0 

	 (11) 

Now is the steady state stable? To assess the stability we need to check the 
eigenvalues of this Jacobian by obtaining our characteristic polynomial: 

3 − − λ − 1  2J = = λ + 3λ − 1	 (12) 
 − 1 −λ

 

Solving for lambda we get: λ = ± − 3 13 ( λ1 = − and λ 2 =3028.3 3028.0 ) 

Because not all the real portions of the eigenvalues are less than zero, this 
system is not stable to small perturbations.  Furthermore our eigenvalues are 
purely real, which means that our steady-state will not exhibit an oscillatory 
response to small perturbations. 

We can test this out using MATLAB with code such as the following: 

% benwang_P4A1.m

% Ben Wang

% HW#5 Problem #1

% due 10/21/05 9 am




% This routine will look at the effect of a small perturbation on the

% behavior of a system of coupled ODEs


% ======= main routine benwang_P4A1.m 
function iflag_main = benwang_P4B1(); 

iflag_main = 0; 

%PDL> clear graphs, screen etc. general initialization 

clear all; close all; clc; 

% specify inital state + random perturbation 
x_0 = [1;2]+0.1*randn(2,1); 

% solve ODE system 
[t_traj, x_traj] = ode15s(@calc_f,[0 100],x_0); 

% plot trajectories 
figure;

subplot(2,1,1);

plot(t_traj,x_traj(:,1));

xlabel('t'); ylabel('x_1(t)');

title('P4A1: Response to Small Perturbation');

subplot(2,1,2); plot(t_traj,x_traj(:,2));

xlabel('t'); ylabel('x_2(t)');


return 

%======= subroutine calc_f.m 

function f = calc_f(t,p) 

x = p(1);

y = p(2);


f = zeros(2,1);

f(1) = -2*(x-1)*(y-2)^2+(x-1)*(y-2)-(y-2)-3*(x-1);

f(2) = -(x-1)+(y-2)*(x-1)^2;


return; 

Because of the random perturbations, we wouldn’t have trajectories that are all 
the same, but you would have an example of a trajectory such as: 



Upon examination of these graphs, we will note that as time increases, y(t) tends 
to diverge significantly, which corresponds to the positive eigenvalue.  Thus our 
system is indeed unstable to a small perturbation.  You will note also that x(t) 
tends to return to the stable solution, since it is associated with the negative 
eigenvalue.  Since we are close to the stable manifold, it is a little more well-
behaved. 

Problem 2: 4.A.2 

You are asked to compute the value of the following definite integral using 
dblquad 

2 ]2 x [(x −1)2 + dydx y (13)∫ ∫1 0  

dblquad does not require much by way of input.  As opposed to trapz, which 
requires you to enter in a specified vector of values, dblquad only asks for a 
function handle, and the limits of integration (and any changes in tolerance if 
required). The function that dblquad calls only needs the function that needs to 
be integrated.  The only difficulty that arises is that some logic needs to be 
implemented to get the correct integration domain.  This can be done in the 
function itself. 

For example our integration domain will not be a simple box.  Our function will 
look like this in 3 dimensions with the range of y varying as a function of x 



A routine that would allow you to calculate the integral would be similar to 
something as follows: 

% benwang_P4A2.m

% Ben Wang

% HW#5 Problem #2

% due 10/21/05 9 am


% We will write a routine that will implement a 2D numerical integration by 
% use of the function dblquad 

% ======= main routine benwang_P4A2.m 
function iflag_main = benwang_P4A2(); 

iflag_main = 0; 

%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 

%PDL> specify integration limits - need to come back to this 
x_hi = 2;

x_lo = 1;

y_hi = sqrt(x_hi);     % max value

y_lo = 0;


% solve for integrand 
int_2D = dblquad(@calc_integrand_f,x_lo,x_hi,y_lo,y_hi,1e-6) 

xlabel('x'); ylabel('y'); zlabel('f(x,y)');

title('Problem P4A2: Integration Domain');

return 

%======= subroutine calc_integrand_f.m 



function f = calc_integrand_f(x,y) 

f = zeros(size(x)); 

for i=1:length(f)

if(y>sqrt(x(i)))


f(i)=0;

%plot(x(i),y); hold on; % use this to see wherever dblquad sets 
%f(i) = 0; 

else 
f(i)=(x(i)-1)^2+y^2;


 plot3(x(i),y,f(i),'o'); hold on; % use this to see wherever dblquad sets

%f(i) = the function specified


end

end


return; 

The output should be something similar to: 

int_2D = 

1.0612 

Problem 3: 4.A.3 

We are asked to plot the position of a point mass subject to harmonic forcing 
term and frictional dissipation. The equation of motion that describes this 
situation will be: 

d 2 x dx m − = Kx −ζ + Fext (t) (14)
dt 2 dt 

where 

− 2Fext (t) = (10 N )sin(ω t) (15)  

We know that to solve a 2nd order ODE, we need to reduce the order by creating 
a system of two 1st order ODEs. We do this by rewriting equation (14) into: 

 − Kx −ζv + Fext (t) v& = 
 m (16)  
 x& = v 

We now have two 1st order ODEs that can be solved with one of our methods. 
Some code that can be used to accomplish this is listed below, using ODE15s: 



% benwang_P4A3.m

% Ben Wang

% HW#5 Problem #3

% due 10/21/05 9 am


% We will write a routine that will solve a 2nd order differential equation

% by reducing the order and creating a system of equations of 1st order

% ODEs.


% ======= main routine benwang_P4A3.m

function iflag_main = benwang_P4A3();


iflag_main = 0;


%PDL> clear graphs, screen etc. general initialization

clear all; close all; clc;


%PDL> specify some values specific to the problem


param.m = 1; % [kg]

param.w_c = 2*pi;      % [rad/s]

param.F = 1e-2;      % [N]

param.K = param.w_c^2*param.m;  % [kg/s^2]


%PDL> specify vectors of different conditions


omega = param.w_c*[0.01 0.1 0.5 0.9 0.99 0.999];

friction = [0; 0.01; 0.1; 1];

for i = 1:length(friction)

    subplot(2,2,i); hold on; 

for j = 1:length(omega)

x_0 = [0;0];   % initial position is at rest and without any velocity

%PDL> solve the system of ODEs

[t_traj, x_traj] = ode15s(@calc_f_P4A3,[0 10],x_0,[],param,friction(i),omega(j)); 
%PDL> plot trajectories 
if j == 1;


 plot(t_traj,x_traj(:,2),'-o');

elseif j == 2;


 plot(t_traj,x_traj(:,2),'.');

elseif j == 3;


 plot(t_traj,x_traj(:,2),'^');

elseif j == 4;


 plot(t_traj,x_traj(:,2),'+');

elseif j == 5;


 plot(t_traj,x_traj(:,2),'*');

else

 plot(t_traj,x_traj(:,2),'--'); 
end


end

xlabel('t');

ylabel('x');


 legend('0.01','0.1','0.5','0.9','0.99','0.999');

    a = num2str(friction(i));




titlename = ['friction factor = ' a];

title(titlename); 

hold off;


%PDL> write matrix A that represents the Jacobian of our system:

%A = [-param.K/param.m - friction(i)/param.m; 0 1];

%b = eig(A);


end

return;

%======= subroutine calc_f_P4A3.m 
function f = calc_f_P4A3(t,x_0,param,friction,freq)

f = zeros(size(x_0));

v = x_0(1);

x = x_0(2);

f(1) = 1/param.m*(-param.K*x - friction*v + param.F*sin(freq*t));

f(2) = v;

return;


Let’s being by looking at the case when friction factor = 0, and there is no 
oscillatory forcing term: 

Now if we look at some low frequency cases still with friction factor = 0 but add 
the forcing term, this code will give us this graph: 



We are asked to describe what is going on here.  Strange indeed! First let’s take 
a look at the case when we do not account for the friction.  Our ode has the form: 

(&&x + Cx + t F ) = 0 (17)  

We remember from undergrad, that for C>0 and F(t) = 0, we have a solution that 
is typically made up of oscillatory terms (sin, cos).  So that we have a solution 
that is oscillatory and with the forcing term, we have superposed on that some 
longer wavelength oscillations.  So we would expect this result to be comparable 
to what we would expect analytically. 

Now we look at the higher frequencies: 

We see that as we increase our frequency such that it approaches the harmonic 
frequency, we start to get resonance. The amplitude of our solution increases 
with time, as expected with resonance. Now we move on to different friction 
factors: 



Now we increase the friction factor.  For low values of this factor, it appears that 
not a whole lot changes. Once the factor reaches a value of 0.1, it seems that 
amplitude of our solution is not as high as it was for lower values of the friction 
factor. By the time the friction factor = 1, we see significant amounts of damping 
and that our solution ceases to grow with time after t = 6 or so, reaching a 
“steady state” of sorts. Furthermore the amplitude of the solution is significantly 
reduced. 

Problem 4: 4.B.1 

We are asked to find the height of the water in the tank and the volume of water 
in the tank as functions of time.  The main differential equation that we can use to 
calculate h(t) is the equation that relates the velocity in the tank to the velocity in 
the exit pipe: 

dh( 2π D 2 v =
π [ h D )] (18)p p4 4 dt 



we can do some rearrangement to get it into the form of our typical IVP problem: 

dh 
= tf ) −= 


 

Dp  
2 

v p (19)( dt  D (h )  

To get an ODE for volume: 

( & ( & 2dV Ahd ) π Dhd (h ) ) (20)= = 
dt dt 4 dt 

We insert the minus sign in equation 19 to account for the fact that we expect the 
height to decrease with time, not increase.  We can solve this equation with our 
classic iterative, time-stepping methods, but the we do not have a value for vp. 
We can get vp from Bernoulli’s equation: 

ρ



 

dh 
 − vp 

 
+ ρ [ 

2   Dp  

1 2
2 hg + Lp ]= 

1 ρ v 2 
p 


 KL + fD 



 Lp 







 

(21)
2  dt    

This is essentially an energy balance posed as an algebraic problem. Basically 
we need a value for vp to plug into equation 19 and we can get it from equation 
20. Together with equations 19 and 20 , they form a Differential-Algebraic 
system. ODE15s is capable of handling this problem. We just have to use the 
‘Mass Matrix’ to inform ODE15s that we are solving simultaneously differential 
equations and algebraic equations. 

Of course our world is not so simple and we have the nasty fD term that further 
complicates our situation, shown in equation (21). To top it off we don’t even 
know what the deal is in the region where Re>2100 but Re<4000. Especially 
since fD depends on Re (equation 22) which then depends back upon vp. 

 
 64 / Re Re < 2100 
 fD =  ??? 2100 < Re < 4000 (22) 
 1 

−= log2 
( e / Dp ) + 

51.2 
 Re > 4000 10  

 7.3 Re fD  fD   

ρ v Dp pRe = (23)
µ 

This seemingly has become an iterative nightmare! No problem though! As long 
as we can phrase it correctly as differential and algebraic equations in ODE15s, 



the algorithm will take care of everything! We will come back to these points in a 
little bit. 

We face some difficulties when trying to figure out the geometry of the tank 
because the diameter changes with respect to h.  We are given a few data points 
with regard to the geometry and we can utilize the matlab function, interp1, to 
approximate the shape of the tank.  In our code we will use a ‘spline’ 
interpolation. You can choose to determine the tank shape with whatever 
interpolation you want: linear, sinusoidal, whatever.  There are many more open-
ended aspects to this problem and we leave it up to you to make your own 
decisions on what assumptions you choose to make about the shape of the tank  
As long as you state your assumptions clearly, your answer will be accepted. 

We write a subroutine get_tank_shape.m which will generate a matrix with 
values of z and their corresponding diameter D(z). It will also return the total 
volume of the tank, neglecting the volume in the small little pipe at the bottom.  
The result of such an interpolation is that we get the following vectors plotted 
against each other in the following graph and a tank volume of: 

tank_volume = 

0.7859 m^3 



We can use this tank_volume value as our initial condition for the ODE in V.  
From the vectors, we know that whatever the water height (or z) is, we have an 
corresponding diameter for our tank. 

Alright. So we’ve gotten that out of the way.  Believe it or not, we have the 
essentials of what we need to solve this problem.  Let’s begin by looking at a top 
down picture: 

We need to solve for h(t). We have an ODE describing the behavior of dh/dt 
(and correspondingly dV/dt, since it is A*dh/dt): 

( p 
dh 

= t f ) = −
 Dp 

 
2 

v (19)
dt  h D ) ( 

With our tank fitting, for any reasonable h, we know the D(h). Dp is just a 
parameter so all we need now is vp. ODE15s can do this, and all we need is an 
initial condition for h. So let’s set h(t=0)= 2, since our tank is full. 

How do we get vp? 

Well we go back to equation (20) and re-arrange to get: 

4  
0 = 

1 ρv 2 



 

Dp 

 
− 1 + ρ [ 1 2 



 Dp 

 

h g + Lp ]− 
2 
ρv p 


 K L + f D 



 Lp 



 

(24)p2  h D )   ( 

We will solve for vp within ODE15s. We do this by setting up a Mass Matrix. 
How do we do this? Let’s look at our situation right now.  We have an ODE for h 
and V. And an algebraic equation for vp. So we can define our system: 



( , ph & = v h f ) (25)  

V & =  (26))
& D h p ,(


We can pass M to ODE15s, and it will know that the first and second equations 
will be a differential and the third equation will be an algebraic one.  Here M = [1 
0 0 ; 0 1 0; 0 0 0], as written above.  So in this way we can do a simultaneous 
solution for both h, V and vp. We recognize that we need some guess for vp, in 
order to use ODE15s. That is fine, we can take an arbitrary guess or make a 
more informed guess. We can make an informed guess by plugging in for a few 
assumed values for the Reynolds number, the fD and solve for vp. 

Everything in equation (24) is a parameter except for vp, D(h), h, and fD. Now we 
have a guess for h in our ODE15s, and it will be solved for simultaneously, so the 
algorith will always have a value for it.  Likewise we will have D(h) just by looking 
it up from get_tank_shape.m. 

Ok, so we’ve taken a reasonable step in the right direction.  Now let’s move on to 
see how the friction factor fD behaves which is the last variable unknown in 
equation (24). We write a function get_fD.m which gives a functional form for 
how fD changes with Re. This might help us to get a better guess of vp to use in 
ODE15s. When we run this function we get: 

( ,0 = v h g p ,...) (27)  

This can be written into the form: 

(27)  
f 
p 
g 

&V 
v p 

&h1 0 0 
0 1 0 
0 0 0 

x M 




 





= 

 



 


 



 



 



 

= 



Of course we see this disconnect between Re = 2100 and Re = 4000.  Here we 
need to make some assumption as to how fD behaves in this region. You can 
assume pretty much any functional form including large oscillations or a step 
function. Here we assume that it transitions linearly, which seems reasonable. 

Seeing this graph we can now say, if we needed to guess an fD and we thought 
that we might be in a high Re regime, we can say 0.03 might be a good guess. 

Back to the structure of our ODE15s, it seems reasonable that we might want to 
keep an algebraic equation for Re, since we need it to calculate fD. Since to 
solve for Re, we need a guess of vp, it seems logical that we might want to make 
sure that they were simultaneously solved.  Again this will go into our function 
which ODE15s calls. We will also modify our mass matrix: 

& ( , ph = v h f ) 
&( , (V & = h D h p )) (28)

( ,0 = v h g p ,...) 

( p0 = v k ,...) 

giving rise to: 



f 
p 

&h 
&V 

1 0 0 0 
0 1 0 0 
0 0 0 0 
0 0 0 0 

 

== 


 

(29)g 
kRe 

v p 

We will need an initial condition for Re, but that can be a rough estimate.  We 
know it will be roughly large because of the high density and low viscosity, 
approximately. You can do a rough order of magnitude analysis.  Now we solve 
for all four variables, h, V, vp, and Re, we can calculate fD. To calculate fD we 
need to implement some logic to assess in what regime we are in.  If we are in 
either the laminar or transition regime, to calculate fD is fairly straightforward. 
However if we are in the turbulent regime (which we happen to be in all of the 
process of draining), we need to invoke fsolve to solve the implicit equation for 
fD. But we remember this from our previous problem sets and it’s not too much of 
a problem. 

This is pretty much it. Simultaneously solve for h, V, Re, and vp, using ODE15s, 
and make occasional function calls to fsolve, looking for the value of fD. 

We write code that can accomplish this: 

% benwang_P4B1.m

% Ben Wang

% HW#5 Problem #4

% due 10/21/05 9 am


% Tank draining problem

% ======= main routine benwang_P4B1.m

function iflag_main = benwang_P4B1();

iflag_main = 0;


%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 

%PDL> specify some values specific to the problem

param.viscosity = 1e-3;      % [Pa s]

param.density = 1000;       % [kg/m^3]

param.KL = 0.2;   % 

param.Dp = 0.01;    % [m]

param.e = 0.045e-3;       % [m]

param.Lp = 0.2;   % [m]

param.g = 9.8;    % [m/s^2]

param.h_0 = 2;    % [m]

param.vp_0 = 5;      % [m/s]

param.Re = 1e4;     % guess


%PDL> get tank shape.  Call a function that returns a matrix that creates a 
%correspondence between height and diameter. This function also returns the 

x M 



 




 






 


















 

 



%tank volume 
[param.diam, param.volume] = get_tank_shape(); 

%PDL> Determine functional form of fD = fD(Re).  Call a function that returns 
%a matrix that corresponds to a given value of fD at a given value of Re 
[param.re param.fD] = get_fD(param); 

%PDL> specify initial guess 
guess = [param.h_0 param.volume param.vp_0 param.Re]; 

%PDL> solve DAE system.  Include some parameters and options to communicate 
%to ODE15s 
M = zeros(4,4); % mass matrix 
M(1,1) = 1;    % equation is differential 
M(2,2) = 1;    % equation is differential 

% we want to automate the termination of this integration when the height 
% of the water reaches zero.  We can do this with the Events option 
% available to ODE15s 

options_ode = odeset('Events',@f_events,'Mass',M,'MassSingular','yes',... 
'MStateDependence','none'); 

t_end = 3000; 

[t_traj, x_traj, TE, YE, IE] = ode15s(@calc_f_P4B1, [0 t_end], guess, options_ode, 

param);


% graphs

figure;

plot(t_traj, x_traj(:,1));

xlabel('Time [s]');

ylabel('Water height in pipe [m]');

axis tight;


empty = num2str(round(TE));

title_label = ['Time required to empty tank: ' empty ' sec'];

title(title_label);

figure;

plot(t_traj, x_traj(:,2));

xlabel('Time [s]');

ylabel('Volume of water in pipe [m^3]');

return


%======= subroutine calc_f_P4B1.m

% the meat of the problem.  Where all the DAE equations, appropriate

% function calls to solve for fD are located.

function [f] = calc_f_P4B1(t,x,param)


f = zeros(size(x));

h = x(1);

V = x(2);

vp = x(3);

Re = x(4);




if h<0.005
    diam_index = 1;    % check to make sure we don't have negative indices 
else
    diam_index = round(h*200); 
end 
D = param.diam(diam_index,2); 

fD = calc_fD(Re, param); 

% now we have our DAE system to solve 
f(1) = -(param.Dp/D)^2*vp;     % use physical intuition, tank must drain 
f(2) = f(1)*pi/4*D^2;      % vout*A 
f(3) = param.density/2*vp^2*((param.Dp/D)^4-1)+...
    param.density*param.g*(h+param.Lp) - ...
    param.density*vp^2/2*(param.KL + fD*param.Lp/param.Dp); 
f(4) = Re - param.density*vp*param.Dp/param.viscosity; 
return


%======= subroutine events_f.m

% this function allows the termination of integratoin when the height of

% the water passes through 0

function [value, isterminal, direction] = f_events(t,y, param)

value = y(1);

isterminal = 1;

direction = -1;

return

%====== subroutine calc_fD.m

function fD = calc_fD(Re, param)

options_fsolve = optimset('Display','off');

if Re<2100


fD = 64/Re; 
elseif Re>4000 

fD = fsolve(@calc_fD_function, 64/Re, options_fsolve, param, Re); 
else 

% manually implement an interpolation between turbulent and laminar

% regime


 a = 64/2100; % fD at high end of laminar Re

    b = fsolve(@calc_fD_function, 64/Re, options_fsolve, param, 4e3); 


fD = (b-a)/(4000-2100)*(Re-2100) + a;

end

return;

%====== subroutine calc_fD_P4B1.m

% returns a value of fD in the turbulent regime

function f = calc_fD_function(x, param, Re)

fD = x(1);

f(1) = 1/fD^0.5 + 2*log10((param.e/param.Dp/3.7)+2.51/(Re*fD^0.5));

return

%====== subroutine get_fD.m

% this function prints out a diagram showing the anticipated

function [re fD] = get_fD(param)

N = 100;

re_laminar = linspace(100,2100,N);

re_turbulent = linspace(4000,100000,N);

re_transition = linspace(2100,4000,N);

re = [re_laminar re_transition re_turbulent]';




vp = re*param.viscosity/param.density/param.Dp; 
fD_laminar = zeros(length(re_laminar),1); 
fD_turbulent = zeros(length(re_turbulent),1); 

options_fsolve = optimset('Display','off'); 
for i=1:N 

fD_laminar(i) = 64/re_laminar(i); 
fD_turbulent(i) = fsolve(@calc_fD_function, fD_laminar(i), options_fsolve, param, ...
    re_turbulent(i)); 

end


a = [re_laminar(N) re_turbulent(1)];

b = [fD_laminar(N) fD_turbulent(1)];

fD_transition = interp1(a,b,re_transition,'linear');

fD = [fD_laminar; fD_transition'; fD_turbulent];

figure;

loglog(re,fD);

xlabel('Re');

ylabel('fD');

title('friction factor as a function of Re');

return


%======= subroutine get_tank_shape.m

% returns a matrix containing values of z and the corresponding diameter of

% the tank for each value of z

function [A, volume] = get_tank_shape()


z_lo = linspace(0,0.5,100);

z_hi = linspace(1.5,2,100);

z_mid = linspace(0.5,1.5,200);

d_lo = 0.35*ones(size(z_lo));

d_hi = ones(size(z_hi));


% now to get d_mid we need to interpolate from the data that we were given

% in the problem specification


a = [0.5; 0.75; 1.0; 1.25; 1.5];

b = [0.35; 0.4; 0.55; 0.85; 1];

d_mid = interp1(a,b,z_mid,'spline');

z = [z_lo z_mid z_hi]';

d = [d_lo d_mid d_hi]';

A = [z d];


figure;

plot(A(:,1),A(:,2));

xlabel('z (m)');

ylabel('D(z) (m)');

title('Estimated shape of irregularly shaped pipe');

% we need to get the inital volume in the tank.  we can get this by using

% trapz on our new interpolation vectors

d_volume = pi/4*(d.^2);

volume = trapz(z,d_volume);


tank_volume = volume




return 

The output from this program will yield: 

and we find that it takes: 2535 seconds for the tank to drain! 


