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1.(3 points) 5.A.2 Compute the point 2x∈ℜ  that minimizes the cost function 
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This is just a simple problem learning how to use fminunc().  All we need to do is code 
this function up and call fminunc with a somewhat appropriate initial guess… though 
your guess is as good as mine.  The result of the code included at the end of this problem 
is: 
 
x = 
 
    1.0000 
   -1.0000 
 
 
F = 
 
   -1.5000 
 
Now, compute the constrained minimum subject to 2 2
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This is the same problem, but you need to use fmincon(), write a nonlinear constraint 
function with one equality constraint, and provide the appropriate series of arguments to 
fmincon.  The result of the code included at the end of this problem is: 
x = 
 
    0.7420 
   -0.6704 
 
 
F = 
 
   -1.3766 
 
As we’d expect, the constrained minimum is greater than our (putative) global minimum. 
 
Then, compute the constrained minimum along the unit circle with the additional 
requirements that both x1 and x2 be nonnegative. 
 



OK, same cost function, same nonlinear constraint, but also a bound limiting the solution 
to the first quadrant of two-dimensional space.  All we need to do is add in the 
appropriate bounds; note that you can add in lower bounds with no upper bounds, and 
Matlab knows exactly what that means.  The result of the code included at the end of this 
problem is: 
 
x = 
 
    1.0000 
         0 
 
 
F = 
 
   -0.5000 
 
Again, as we’d expect, this further constrained answer is even greater than either of the 
previous two. 
 
Here’s the relevant code: 
 
function marksty_P5A2() 
  
clear all; close all; 
  
%PDL> Set an initial guess 
x0 = [0; 1]; 
  
%PDL> Find unconstrained minimum... 
[x, F] = fminunc(@unconFunc,x0) 
  
%PDL> Find first constrained minimum subject to nonlinear constraint. 
[x, F] = fmincon(@unconFunc,x0,[],[],[],[],[],[],@nonLinConFunc) 
  
%PDL> Find final constrained minimum with additional bound constraints. 
[x, F] = fmincon(@unconFunc,x0,[],[],[],[],[0;0],[],@nonLinConFunc) 
  
end 
  
function F = unconFunc(x) 
% This is the basic function we are either finding the unconstrained 
%  minimum of or will optimize subject to constraints. 
g = [-2;1]; 
H = [3 1; 1 2]; 
F = dot(g,x) + dot(.5*x,H*x); 
end 
  
function [C, Ceq] = nonLinConFunc(x) 
% This is the nonlinear constraint function reflecting equation 
%  5.175... there and no nonlinear inequalities, though there is 
%  one nonlinear equality. 



% The format it solves for is C <= 0, Ceq = 0. 
C = 0; 
Ceq = x(1)^2 + x(2)^2 - 1; 
end 
 
Grading: We’re mostly just looking for right answers here.  If you got the right answers, 
you got credit, and each step was worth one point.  Otherwise, partial credit was given for 
each part attempted. 
 
2. (3 points) 5.B.1 We wish to use the enzyme whose kinetics, described by (5.51), were 
studied earlier in this chapter, in an immobilized-enzyme packed bed reactor.  Neglecting 
any internal mass transfer resistance (we assume the enzyme is immobilized in very small 
pellets), we compute the outlet substrate concentration by solving the ODE-IVP 
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Cs is the substrate concentration in M, and is constrained to lie in [10-4,2].  W is the mass 
of enzyme in the reactor in mg, and we integrate (5.176) to the total mass WR = 1 g.  v is 
the volumetric flow rate through the reactor in L/min.  αc = 106 μmol/mol is a conversion 
factor, and the kinetic constants are Vm = 200 μmol/min/mgE, Km = 0.201 M, Ksi = 
0.5616 M.  Plot the inlet substrate concentration cs0 that maximizes the outlet molar flow 
rate of product, as a function of v. 
 
So, there are two approaches here… you can integrate the equation analytically and use 
that result, or you can just use the equation with Matlab’s ODE integrator.  Since the 
latter is less prone to typos and math errors, we’ll stick with that one.  So, we assume that 
we can integrate this equation easily to the final W of 1 g, or 1000 mg in terms of the 
units of Vm.  That means we know what cs(W = 1000 mg) is, and so we can “maximize 
the outlet molar flow rate of product”.  That’s really the most important part of this.  We 
don’t want to minimize Cs*v, because that could be done by just using the smallest 
allowable inlet concentration.  What we want to do is maximize (Cx0 – Cs)*v, which will 
give us a representation of molar flow rate of product (no matter what the reaction 
stoichiometry is).  Now, someone pointed out that you should in theory be able to just 
maximize (Cx0 – Cs) at any given v, because the v won’t be changed by the minimization 
routine.  Indeed, this seems like it should be allowable in principle.  In fact, though, it 
causes some sensitivity to initial guesses at higher flowrates.  I’ll get more to this 
sensitivity in a second, but the key is that we understand that in our minimization 
function, we first integrate the ODE and then return the function that is to be minimized 
with the resulting value of the final Cs. 
 
With that, what we need to do is pretty straightforward: just maximize the molar flow rate 
of product (as defined above) subject to the constraints.  Of course, there was some 
confusion about what the constraints should be, but we’ll accept both possibilities: just 
constrain Cs0 to be in the range in the problem statement, or define all Cs (including Cs0) 
to be in that range.  The former is straightforward, since Cs0 is what we are changing to 
optimize our function.  The latter is a little more difficult, but it only entails integrating 
the same ODE as before again, this time in the nonlinear constraint function.  It just 



increases the time it takes to execute the problem and slightly changes the range of 
reliable answers that you can get.  This can all be seen in the code included at the end of 
this problem. 
 
The final thing to consider is sensitivity to initial guesses and other unusual things… 
now, some of you may not have noticed this if your initial guess was two, but if you used 
-(Cx0 – Cs)*v as your cost function and did not constrain Cs, then somewhere around 
v=0.003, your result is sensitive to your initial guess.  This is somewhat unexpected… at 
low enough v, you expect everything to react, so you’d think that 2 would be the ideal 
answer.  This may be something that can be fixed by providing the Jacobian in your 
function, but I didn’t bother and don’t mind if you didn’t either.  
 
Next possibility: -(Cx0 – Cs)*v as your cost function and you constrained Cs.  In this case, 
you will get wild values of Cs0 below about v = 0.03 due to the fact that you’re exceeding 
maximum function evaluations.  Again, this may be something that can be solved with a 
Jacobian, but it’s acceptable to just avoid the problem by looking at an appropriate range 
of v. 
 
Final possibility we’ll look at: -(Cx0 – Cs) as your cost function.  You’ll see similar issues 
on the low scale of v depending on whether or not you constrained Cs0, but in addition 
when you get to v of about 600, you’ll see guess dependence… you might think that this 
is because there’s just not that much reaction to occur, but the other cost function 
converges to the expected result. 
 
So, yeah… those are the ranges of interesting/frustrating results.  Jacobians may fix this 
stuff, but as I pointed out in the email, it’s sufficient if you just provide a wide enough 
range of v to display different behavior but avoid the troublesome regions.  If you do 
include troublesome regions and get troublesome answers, you’ll need to have some sort 
of explanation for why you’re getting unusual answers and what exactly is happening. 
 
OK, enough writing… here’s a representative plot (in this case, for unconstrained Cs and 
for the cost function of -(Cx0 – Cs)*v), followed by sample code. 
 



. 
 
function marksty_P5B1() 
  
clear all; close all; 
  
%PDL> Set up range, initial guess. 
% I'm using this initial guess just so that it's obvious 
%  when I have sensitivity to the initial guess 
guess = 1e-4;  
% This is the region of consistent behavior for my combination 
%  of cost function and constraints 
vVec = logspace(-2.5,3,40); 
options=optimset('LargeScale','off'); 
%PDL> Minimize for each v. 
for i=1:length(vVec), 
    v = vVec(i); 
    % Note the commented-out part at the end... I've been 
    %  switching back and forth frequently between the two 
    %  different options. 
    [x, F] = fmincon(@(x)minFunc(x,v),guess,[],[],[],[], ... 
        10^(-4),2,[],options);%@(x)nonlinConFunc(x,v),options); 
    storage(i) = x; 
end 
% PDL> Plot results. 
% The plot looks much nicer on a semilogx since we're going 
%  over such a wide range. 
semilogx(vVec,storage) 
xlabel('v [L/min]') 



ylabel('C_s_0 [mol/L]') 
title('Optimal initial substrate concentration as a function of 
volumetric flowrate') 
end 
  
%PDL> implement constraints, function to integrate, and 
%  cost function. 
function F = minFunc(Cs0,v) 
% This is the function we need to minimize... 
options.disp = 0; 
% We find the final Cs by integrating. 
[t, y] = ode45(@integFunc,[0 1000],Cs0,options,v); 
Cs = y(length(y)); 
% Then find the product molar flow rate. 
F = -(Cs0 - Cs)*v; 
  
end 
  
function f = integFunc(t,Cs,v) 
% This is the function we need to integrate, per the  
%  problem statement. 
W = 1000; 
alphaC = 1e6; 
Vm = 200; 
Km = 0.201; 
Ksi = 0.5616; 
f = -Vm/(alphaC*v)*(Cs/(Km + Cs + Cs^2/Ksi)); 
  
end 
  
function [C, Ceq] = nonlinConFunc(Cs0,v) 
% If we were implementing constraints on all Cs, this is 
%  the function we'd use.  No equality constraint, and 
%  we require that Cs(final) (and thus all Cs, since the 
%  function is monotonically decreasing) are above 1e-4. 
C = zeros(2,1); 
options.disp = 0; 
[t, y] = ode45(@integFunc,[0 1000],Cs0,options,v); 
Cs = y(length(y)); 
C(1) = 10^(-4) - Cs; 
% We can also (needlessly) reinforce the maximum of 2, though 
%  our constraints on Cs0 should take care of this. 
C(2) = Cs - 2; 
Ceq = 0; 
  
end 
 
Grading: 
(-1 point): Plot range insufficient… you must show limiting cases at both high and low v, 
where the low v results should max out at Cs0=2 before you reach regions of instability. 
(-1 point): Constraints or cost function coded incorrectly 
(-1 point): Code doesn’t run immediately due to bug 
(-0.5 point): Small parts of write-up incomplete or missing 
 



3. (4 points) 5.B.3  We wish to determine the best path for a road connecting two points 
in hilly terrain.  Let 2r ∈ℜ  be the coordinates of a point in km and let the elevation at 
that point, also in km, be z(r).  We represent the measured ground elevation data as a 
sum of contributions from individual hills, each hill being represented by a Gaussian 
function, 
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In the region of interest, we use a representation with four hills,  
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Figure 5.16 shows the elevation controus along with the start (4, -2) and end (2, 7) 
positions of the planned road. 
 

 
 
All land is available to build upon.  Our task is to find the shortest path between the two 
end points subject to the constraint that the grade cannot be greater than 8%, i.e. the 
slope cannot be large in magnitude than 0.08. 
 
Let 0  be a contour variable and 1s≤ ≤ r(s) be the path of the road, subject to  
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We discretize the path by setting N contour positions ( )1ks k N= +  and the coordinates 
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Subject to the constraints that for each road sement, 
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Using this approach, propose a path for the road to follow. 
 
This is another relatively straightforward problem; the hardest parts here (beyond the 
usual fixing of assorted typos that keep programs from working) are designing reasonable 
initial guesses and plotting the hills and path. 
 
It is extremely useful to realize that this program allows for significant functionalization.  
For instance, you will need to get the height of many different r values at many different 
times, and you don’t necessarily want to confine yourself to a set grid of points, so it is 
easiest to make a function, say “marksty_getHeight”, that will return the height of a given 
point. 
 
From there, we realize that two additional functions will be useful: a cost function, as 
defined by equation (5.180) in the book, and a constraint function, as defined by equation 
(5.181).  As was noted in an email to the class, the squaring of the vectors in the cost 
function is meant to imply dotting those vectors with themselves, giving a scalar output 
for the cost function (which is good, since we haven’t covered multiobjective 
optimization).  We put these in the function marksty_distFun.  The constraints are a little 
bit different… though there is one constraint equation, it references each point on your 
path, so you really need a constraint for each of the steps you take… this means that you 
will need N+1 constraint functions.  We put these inequality constraints in the function 
marksty_conFun. 
 
In my code, I supplied the N interior points (excluding endpoints) as the variables to be 
optimized.  This means I need no equality constraints.  An equally valid method is to 
supply the cost function the N+2 total points (including endpoints) and have two equality 
constraints, one each for the values of the start and end points.  Either way, you must be 
consistent between your cost and constraint functions and must define your cost function 
appropriately.  It is also important to note that either way you should only have N+1 
inequality constraints.  It does not make sense to have N+3 inequality restraints; at best 
some would be redundant, and at worst some may be wrong. 
 



Now what about that contour variable?  Is it necessary?  Not strictly.  It is a useful book-
keeping tool, for sure.  There were a couple of questions about whether each of the points 
had to be equally far apart from the others, but this is not intrinsic to the definition of a 
contour variable as far as I know.  So really, you could completely ignore it for the 
purposes of solving the problem (which is what I did). 
 
To plot the hills, it is probably easiest to make a 2-D grid and find the height for each 
point in the grid; note that this does not preclude us from getting the height at exact 
points along our path, it merely gives us a matrix with which we can plot hill contours 
and see how reasonable our final path is. 
 
The final issue is setting initial guesses.  As a practical matter, I found that my code 
behaved much better if my initial guess was close to satisfying constraints even if it was 
suboptimal in distance; if I gave it the best distance (a straight line) that obviously 
violated constraints, its behavior was somewhat unpredictable.  Again, this is to be 
expected for any routine that solves for local extrema.  This is why we always do our best 
to give a good (or at least reasonable) initial guess.  Looking at the hills, we see two 
obvious ways to circumvent the hills that are most likely going to be our winners: either 
through the valley or completely around the hills on the right side of the figure.  We’ll set 
up initial guesses for those and see what Matlab thinks about them. 
 
Another note: since we are using the better-behaved quadratic cost function (rather than 
the square root of each distance vector dotted with itself), there will be a significant 
dependence of the final “cost” upon the number of points in the interpolation.  For 
instance, if we were going a distance of 4 units with one intervening point, our minimum 
cost function would be where the intervening point is the midpoint.  This would yield a 
total cost of 8 (22 + 22).  If we put two more points in there, the minimum cost would be 4 
(12 + 12 +12 +12), even though we are traveling the same distance. 
 
With all of that being said… we have all of the concepts down, and we can put it all into 
code.  Below you’ll find plots of the contours and the two paths I found… the path 
through the valley turns out to be the better one.  For a grid of 25 points, I find the 
optimum cost to be 4.3482 km2.  The path can be seen on the plot below, delineated by 
circles going through the valley.  For the morbidly curious, the (x, y) values are included 
after the code. 



 
 
% Mark Styczynski 
% 10.34 
% HW6, Problem 5.B.3 
  
clear all; close all; 
  
% PDL> Choose number of grid points. 
%  After some post hoc experimenting, we find that it is unlikely 
%   that increasing the number of grid points will change the 
%   character of our solution, so we keep it to N = 25. 
N = 25; 
  
% Let's just set the size of this for now. 
rGuess = zeros(2,N); 
  
% We can imagine that there may be local optima, so we  
%  propose a couple of possible paths... one guaranteed 
%  to go through the "valley", another guaranteed to just  
%  circumvent all mountains. 
  
%PDL> Set up initial guesses 
% We choose the point (1, 6) and note that a line between 
%  the beginning and that point will likely not violate 
%  constraints and will lead us through the valley.  We then 



%  interpolate to make N total points leading us there. 
for k=1:N, 
    rGuess(1,k) = 4 + (1 - 4)/(N+1)*k; 
    rGuess(2,k) = -2 + (6 - (-2))/(N+1)*k; 
end 
  
% PDL> Find constrained optimum. 
rVec = fmincon('marksty_distFun',rGuess,[],[],[],[],[],[], ... 
    'marksty_conFunc') 
  
optimum1 = marksty_distFun(rVec) 
  
% PDL> Set up initial guesses 
%  The point (6,6) will lead us around the hills instead. 
%  Same concept as above. 
for k=1:N, 
    rGuess(1,k) = 4 + (6 - 4)/(N+1)*k; 
    rGuess(2,k) = -2 + (6 - (-2))/(N+1)*k; 
end 
% PDL> Find constrained optimum. 
rVec2 = fmincon('marksty_distFun',rGuess,[],[],[],[],[],[], ... 
    'marksty_conFunc') 
  
optimum2 = marksty_distFun(rVec2) 
  
% This value is greater than the previous one, so we believe 
%  that the route through the valley is the shortest one 
%  that obeys the constraints. 
  
% Some code for plotting borrowed from Dr. Beers, 2004. 
  
% PDL> Set up a mesh to plot hill contours. 
x = [-4:.1:8]; 
y = [-4:.1:8]; 
[XX,YY] = meshgrid(x,y); 
ZZ = zeros(size(XX)); 
for ix=1:length(x) 
    for iy=1:length(y) 
    r = [XX(iy,ix); YY(iy,ix)]; 
    ZZ(iy,ix) = marksty_getHeight(r); 
    end 
end 
  
% PDL> Make contour plot 
figure; 
[C,H] = contour(XX,YY,ZZ,8); 
clabel(C,H); 
xlabel('x (km)'); ylabel('y (km)'); 
zlabel('z (km)');  
title('A road through hills: optimal path indicated by circles'); 
hold on; 
% PDL> Plot paths on contour plot. 
r_start = [4;-2]; r_end = [2; 7]  ;
plot(r_start(1),r_start(2),'x'); 
text(r_start(1)+0.2,r_start(2)+0.2,'START'); 



plot(r_end(1),r_end(2),'x'); 
text(r_end(1)-0.75,r_end(2)+0.3,'END'); 
plot(rVec(1,:),rVec(2,:),'o'); 
plot(rVec2(1,:),rVec2(2,:),'+'); 
return; 
 
function Fc = marksty_distFun(rVec) 
% Function to return the cost/distance for a set of points. 
  
% Assume rVec = [r1 r2 r3 ...] 
% So its size is 2 x N 
  
rVecSize = size(rVec); 
N = rVecSize(2); 
rStart = [4; -2]; 
rEnd = [2; 7]; 
  
%PDL> Find first step distance. 
Fc = sum((rVec(:,1) - rStart).^2); 
  
%PDL> Add interim step distance. 
for k=1:N-1, 
    Fc = Fc + sum((rVec(:,k+1) - rVec(:,k)).^2); 
end 
  
%PDL> Add final step distance. 
Fc = Fc + sum((rEnd - rVec(:,N)).^2); 
 
function [C, Ceq] = marksty_conFunc(rVec) 
% A constraint function to enforce the maximum slope requirement. 
% Assume rVec = [r1 r2 r3 ...] 
% So its size is 2 x N 
  
rVecSize = size(rVec); 
N = rVecSize(2); 
rStart = [4; -2]; 
rEnd = [2; 7]; 
maxSlope = 0.08; 
  
% PDL> Constraint for the first step 
C(1) = abs(marksty_getHeight(rVec(:,1))- marksty_getHeight(rStart))/... 
    norm(rVec(:,1) - rStart) - maxSlope; 
  
% PDL> Constraint for intermediate steps. 
for k=1:N-1, 
    C(k+1) = abs(marksty_getHeight(rVec(:,k+1))- 
marksty_getHeight(rVec(:,k)))/... 
        norm(rVec(:,k+1) - rVec(:,k)) - maxSlope; 
end 
  
% PDL> Constraint for final step. 
C(N+1) = abs(marksty_getHeight(rEnd)- marksty_getHeight(rVec(:,N)))/... 
    norm(rEnd - rVec(:,N)) - maxSlope; 
  



% PDL> No equality constraints. 
Ceq = 0; 
 
function z = marksty_getHeight(r) 
  
% Function to obtain the height z of a point r in hilly terrain. 
% r is a 2-d vector 
  
zMax = [1.2 0.8 0.5 0.5]; 
rc = [3 4 -1 -1; 4 1 -2 2]; 
sigmaInv(:,:,1) = inv([1 0.1; 0.1 1.5]); 
sigmaInv(:,:,2) = inv([3 0.5; 0.5 1]); 
sigmaInv(:,:,3) = inv([2.5 0.4; 0.4 0.8]); 
sigmaInv(:,:,4) = inv([3 0.2; 0.2 1.2]); 
z = 0; 
  
% PDL> Add the component elevations together. 
for k=1:4 
    z = z + zMax(k)*exp(dot(-.5*(r - rc(:,k)), ... 
        sigmaInv(:,:,k)*(r - rc(:,k)))); 
end 
 
rVec  =  
    3.7561   -1.6696 
    3.4778   -1.3325 
    3.0967   -1.1832 
    2.7041   -1.0683 
    2.3116   -0.9536 
    1.9322   -0.8003 
    1.6183   -0.5321 
    1.4272   -0.1696 
    1.3033    0.2199 
    1.2473    0.6252 
    1.2311    1.0315 
    1.2149    1.4382 
    1.1988    1.8446 
    1.1825    2.2514 
    1.1663    2.6579 
    1.1503    3.0645 
    1.1342    3.4713 
    1.1520    3.8776 
    1.1908    4.2825 
    1.2523    4.6847 
    1.3409    5.0817 
    1.4589    5.4714 
    1.6030    5.8516 
    1.7615    6.2255 
    1.9007    6.6076 
 



Grading: 
2 points: Concepts, approach, and understanding of the problem (writeup, etc) 
1 point: Trying multiple initial guesses… partial credit was given depending on the 
amount you addressed global/local optimality 
1 point: Getting the correct path and providing either a plot or coordinates for it 


