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November 7, 2005 
 
Problem 1: 6.B.3 
 
This is basically just a 1D BVP which we can solve using the method of finite 
differences.  We will come up with an equation corresponding to each grid point 
and solve the entire system of equations with FSOLVE, since we have a 
nonlinear system of equations with the exponential terms.  We are also asked to 
plot a few ancillary plots, introduce comparisons, and make some comments 
about the physicalness of the Poisson-Boltzmann equation.  We begin by looking 
at the how the Debye length, λ, varies with [NaCl]: 
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Plotting this: 
 

 
 
We are asked to answer whether or not it makes sense to have a Debye length 
of 0.1 nm, and we answer that it is not.  The debye length is the characteristic 
length scale of this problem and it doesn’t make sense to have a continuum 
model to describe the phenomenon when the length is on the order of the 
charged species themselves. 
 
Next we are asked to solve this boundary value problem (BVP) numerically.This 
is relatively straightforward after all the non-dimensionalization and derivation 
that professor Beers goes through.  He arrives at: 
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with the following Dirichlet type boundary conditions: 
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To derive the finite difference equations required for this equation we first look at 
how we are to space our grid points.  Why do we even care about this?  Well if 
we look at equation (4) which states that our boundary condition is defined at 
infinity, we quickly realize that it is difficult to come up with a numerical solution 
that includes an infinite number of grid points.  Instead we come up with a 
numerical approximation to infinity.  Because we know we have a characteristic 
length associated with this problem, λ, we can assume that most of what 
happens occurs within one characteristic length.  Therefore if we set infinity at 
say 10λ, this will likely be sufficiently far enough from what occurs to represent 
infinity.  Now we have a range over which we can set up a grid. 
 
However we have just said that, most likely, all of the fun occurs within the span 
of one λ, we want a dense grid over this region where we can observe how the 
solution varies here.  Similarly we might want to put a sparse grid in the region 
for length > λ, to save on computation time.  And this is what we do here in this 
solution.  However if you chose not to include this different grid spacing, it is fine. 
 
As long as you write the correct finite difference equations for your differential 
equation you should be all good.  First we look at the Laplacian term, and we 
derive the finite difference terms generally for any grid-spacing: 
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So combining this with the exponential terms we arrive at: 
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This equation is valid for all points i, not at i = 1, i = N+1 (for example 10λ).  We 
now treat each boundary condition individually. 
 
For Dirichlet type boundary conditions, we just replace the value of φ at the 
‘imaginary’ grid point, with the boundary value.  For our problem, we look at our 
first equation and replace the value of 0φ  with K (as in equation (3)).  We also 
know that  00 =ξ  at the boundary. 
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For our boundary condition at infinity, we know that the value of φ = 0 at grid 
point N+1.  We write the following as: 
 

( )NN

NN

NN

NN

NN

NN

ee φφ

ξξ
ξξ
φφ

ξξ
φφ

−+
−

−
−

−
−
−

= −

−+

−

−

+

+

2
1

2

0
11

1

1

1

1

      (9) 

 
We treat ξξξ ∆+=+ NN 1 .  But there are other ways you can treat this. 
 
We get a plot like the following: 
 



 
 
A few notes about this graph: we plot it using semilogy because it is easier the 
see the full range of different orders of magnitudes of wall potential.  We can also 

see that for values of 10 <<=
Φ K
Tk
q

B

e , ( )ξφ  shows an exponential decay, which 

shows up as a linear plot in semilogy.  As we increase K we observe a deviation 
from that purely exponential behavior.  At high values of K, the potential curves 
tend to collapse onto one another, as the behavior is dominated by the 
exponential term.  At high debye lengths we observe an artifact as the curves 
tend to diverge towards zero.  This is because at 10λ, we set the value of φ = 0. 
 
If we did not plot this in semilogy, your curves would look something like: 
 

 
 



% benwang_P6B3.m 
% Ben Wang 
% HW#7 Problem #1 
% due 11/7/05 9 am 
  
% This routine will use the finite difference approximation to generate a 
% system of nonlinear equations, solving the poisson-boltzmann equation 
  
% ======= main routine benwang_P6B3.m 
function iflag_main = benwang_P6B3(); 
  
iflag_main = 0; 
  
%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 
  
%PDL> specify parameters 
param.qe = 1.602e-19;                   % [C]           charge of electron 
param.Nav = 6.022e23;                   % []            Avogradro's number 
param.eps_0 = 8.854e-12;                % [C^2/J-m]     permittivity of free space 
param.eps_r = 78;                       % []            dielectric constant for water 
param.kB = 1.38e-23;                    % [J/K]         Boltzmann's constant 
param.T = 298;                          % [K]           room temp 
param.totaldebye = 10;                   %               total debye lengths of simulation 
  
%PDL> specify grid parameters 
  
grid.N1 = 50;                           % number of grid points close to the wall 
grid.N2 = 10;                           % number of grid points far away from wall 
  
%PDL> specify NaCl concentration 
  
num_curves = 10; 
conc = logspace(-6,0,num_curves);               % [M] 
NaCl = conc*1000;                               % [mol/m^3] 
  
%PDL> specify wall potential  
  
big_phi = logspace(-2,2,num_curves)/param.qe*param.kB*param.T; 
matrix = zeros(grid.N1+grid.N2,num_curves); 
  
% plot debye length vs. [NaCl] 
figure; 
for i = 1:length(NaCl) 
    param.debye = sqrt(param.eps_0*param.eps_r*param.kB*param.T/... 
        (param.qe^2*param.Nav*(2*NaCl(i)))); 
    loglog(conc(i),param.debye,'s'); 
    hold on; 
end 
  
hold off; 
xlabel('[NaCl] (M)'); 
ylabel('Debye Length (m)'); 



  
%PDL> specify discretization of grid 
  
grid.domain = linspace(0,1,grid.N1+1); 
grid.domain = grid.domain(2:end); 
a = linspace(1,param.totaldebye, grid.N2+1); 
grid.domain = [grid.domain a(2:end)]'; 
 
%PDL> call fsolve to solve system for nonlinear equations 
  
for j = 1:length(big_phi) 
        param.wallpotent = big_phi(j); 
        guess= ones(grid.N1+grid.N2,1); 
        [phi,f] = fsolve(@calc_func_P6B3, guess, [], param, grid); 
        matrix(:,j) = phi; 
end 
  
% plot curves 
  
figure; 
for m = 1:num_curves 
    x = grid.domain; 
    y = matrix(:,m); 
    semilogy(x,y,'-'); 
    hold on; 
end 
xlabel('Debye Lengths'); 
ylabel('Dimensionless wall potential'); 
title('Boundary Condition for Constant Wall Potential'); 
  
figure; 
for m = 1:num_curves 
    x = grid.domain; 
    y = matrix(:,m); 
    plot(x,y,'-'); 
    hold on; 
end 
xlabel('Debye Lengths'); 
ylabel('Dimensionless wall potential'); 
title('Boundary Condition for Constant Wall Potential'); 
  
return; 
  
%======= subroutine calc_func_P6B3.m 
function [f] = calc_func_P6B3(phi,param,grid) 
  
N = length(phi); 
f = zeros(N,1); 
zeta = grid.domain; 
phi; 
  
% first calculate interior points 
for k = 2:N-1 
    delta_zeta_mid = 0.5*(zeta(k+1)-zeta(k-1)); 



    A_lo = ((zeta(k)-zeta(k-1))*delta_zeta_mid)^-1; 
    A_hi = ((zeta(k+1)-zeta(k))*delta_zeta_mid)^-1; 
    A_mid_1 = -1/((zeta(k+1)-zeta(k))*delta_zeta_mid); 
    A_mid_2 = -1/((zeta(k)-zeta(k-1))*delta_zeta_mid); 
    f(k) = A_lo*phi(k-1)+(A_mid_1+A_mid_2)*phi(k)+A_hi*phi(k+1)+0.5*(exp(-phi(k))... 
        -exp(phi(k))); 
end 
  
% boundary condition close to the wall.  since this is a fixed number, we 
% can just specify the value of "phi(0)" 
  
phi_wall = param.wallpotent*param.qe/param.kB/param.T; 
delta_zeta_mid = 0.5*(zeta(2)-0); 
A_lo = 1/((zeta(1) - 0)*delta_zeta_mid); 
A_hi = 1/((zeta(2)-zeta(1))*delta_zeta_mid); 
A_mid_1 = -1/((zeta(2)-zeta(1))*delta_zeta_mid); 
A_mid_2 = -1/((zeta(1)-0)*delta_zeta_mid); 
f(1) = A_lo*phi_wall+(A_mid_1+A_mid_2)*phi(1)+A_hi*phi(2)+0.5*(exp(-phi(1))-
exp(phi(1))); 
  
% boundary condition close at infinity.  this is also a fixed number = 0. 
% This is significantly different however, since at very far away, the 
% derivative also approaches 0.  We will try them both. 
  
phi_equil = 0; 
delta_zeta_mid = 0.5*(phi_equil+zeta(N-1)); 
A_lo = 1/((zeta(N-1) - zeta(N))*delta_zeta_mid); 
A_hi = 1/((0-zeta(N))*delta_zeta_mid); 
A_mid_1 = -1/((0-zeta(N))*delta_zeta_mid); 
A_mid_2 = -1/((zeta(N)-zeta(N-1))*delta_zeta_mid); 
f(N) = A_lo*phi(N-1)+(A_mid_1+A_mid_2)*phi(N)+A_hi*phi_equil+0.5*(exp(-phi(N))-
exp(phi(N))); 
return; 

 
Problem 2: P6B4 
 
This problem is very similar to the problem P6B4, with the exception that we now 
change the boundary condition at the wall to one of fixed charge density.  The 
way charge density is related to the wall potential is by the following equation: 
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If we non-dimensionalize we get our boundary condition that states: 
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So it looks like we just have a fixed Neumann condition, in which we can vary 0σ . 
 



With this in mind we now have to go back to our first equation and find a new 
value for 0φ  
 
We look in Beers, page 376 on the treatment of Neumann boundary conditions.  
Just to reiterate we use this polynomial interpolation to approximate the 
derivative to get better error performance.  Assuming that we have a locally 
uniform grid (we bypass the tedious algebra associated with the Lagrange 
polynomials) and we see that we can use the equation: 
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We can solve for 0φ and arrive at: 
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We can now plug this into equation (7) and arrive at: 
 

( )

( )11

2

1

222
1

12

12

2
1

2

3
42

0 φφ

ξ
ξ

φφξφ

ξξ
φφ

ee

K

−+







 −+∆

−
−

−
−

= −     (14) 

 
Now everything else remains the same from the code in P6B3.  We run it to get 
the following plot: 
 

 
 
 



 
You notice that you get very similar results to problem 6B3. 
 

% benwang_P6B4.m 
% Ben Wang 
% HW#7 Problem #1 
% due 11/7/05 9 am 
  
% This routine will use the finite difference approximation to generate a 
% system of nonlinear equations, solving the poisson-boltzmann equation 
  
% ======= main routine benwang_P6B4.m 
function iflag_main = benwang_P6B4(); 
  
iflag_main = 0; 
  
%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 
  
%PDL> specify parameters 
param.qe = 1.602e-19;                   % [C]           charge of electron 
param.Nav = 6.022e23;                   % []            Avogradro's number 
param.eps_0 = 8.854e-12;                % [C^2/J-m]     permittivity of free space 
param.eps_r = 78;                       % []            dielectric constant for water 
param.kB = 1.38e-23;                    % [J/K]         Boltzmann's constant 
param.T = 298;                          % [K]           room temp 
param.totaldebye = 10;                   %               total debye lengths of simulation 
  
%PDL> specify grid parameters 
  
grid.N1 = 50;                           % number of grid points close to the wall 
grid.N2 = 20;                           % number of grid points far away from wall 
  
%PDL> specify NaCl concentration 
num_curves = 6; 
conc = logspace(-6,0,num_curves);               % [M] 
NaCl = conc*1000;                               % [mol/m^3] 
  
%PDL> wall charge density 
  
sigma_0 = logspace(-2,2,num_curves); 
matrix = zeros(grid.N1+grid.N2,num_curves); 
  
%PDL> specify discretization of grid 
  
grid.domain = linspace(0,1,grid.N1+1); 
grid.domain = grid.domain(2:end); 
a = linspace(1,param.totaldebye, grid.N2+1); 
grid.domain = [grid.domain a(2:end)]'; 
  
for j = 1:length(sigma_0) 
        param.sigma_wall = sigma_0(j); 
        guess= ones(grid.N1+grid.N2,1); 



        [phi,f] = fsolve(@calc_func_P6B4, guess, [], param, grid); 
        matrix(:,j) = phi; 
end 
  
% plot curves 
funky = ['-','.','-','.','-','.']; 
figure; 
for m = 1:num_curves 
    x = grid.domain; 
    y = matrix(:,m); 
    semilogy(x,y,funky(m)); 
    hold on; 
end 
xlabel('Debye Lengths'); 
ylabel('Dimensionless charge density at wall'); 
title('Boundary Condition for Constant Charge Density'); 
  
return 
  
%======= subroutine calc_func_P6B4.m 
function [f] = calc_func_P6B4(phi,param,grid) 
  
N = length(phi); 
f = zeros(N,1); 
zeta = grid.domain; 
phi; 
  
% first calculate interior points 
for k = 2:N-1 
    delta_zeta_mid = 0.5*(zeta(k+1)-zeta(k-1)); 
    A_lo = ((zeta(k)-zeta(k-1))*delta_zeta_mid)^-1; 
    A_hi = ((zeta(k+1)-zeta(k))*delta_zeta_mid)^-1; 
    A_mid_1 = -1/((zeta(k+1)-zeta(k))*delta_zeta_mid); 
    A_mid_2 = -1/((zeta(k)-zeta(k-1))*delta_zeta_mid); 
     
    f(k) = A_lo*phi(k-1)+(A_mid_1+A_mid_2)*phi(k)+A_hi*phi(k+1)+0.5*(exp(-phi(k))... 
        -exp(phi(k))); 
end 
  
% boundary condition close to the wall.  since this is a fixed number, we 
% can just specify the value of "phi(0)" 
  
constant = param.sigma_wall*2/3*(zeta(2)-zeta(1)); 
delta_zeta_mid = 0.5*(zeta(2)-0); 
A_lo = 1/((zeta(1) - 0)*delta_zeta_mid); 
A_hi = 1/((zeta(2)-zeta(1))*delta_zeta_mid); 
A_mid_1 = -1/((zeta(2)-zeta(1))*delta_zeta_mid); 
A_mid_2 = -1/((zeta(1)-0)*delta_zeta_mid); 
     
f(1) = A_lo*constant+(A_mid_1+A_mid_2+4/3)*phi(1)+(A_hi-1/3)*phi(2)+0.5*(exp(-phi(1))-
exp(phi(1))); 
  
% boundary condition close at infinity.  this is also a fixed number = 0. 
% This is significantly different however, since at very far away, the 



% derivative also approaches 0.  We will try them both. 
  
phi_equil = 0; 
  
delta_zeta_mid = 0.5*(phi_equil+zeta(N-1)); 
A_lo = 1/((zeta(N-1) - zeta(N))*delta_zeta_mid); 
A_hi = 1/((0-zeta(N))*delta_zeta_mid); 
A_mid_1 = -1/((0-zeta(N))*delta_zeta_mid); 
A_mid_2 = -1/((zeta(N)-zeta(N-1))*delta_zeta_mid); 
     
f(N) = A_lo*phi(N-1)+(A_mid_1+A_mid_2)*phi(N)+A_hi*phi_equil+0.5*(exp(-phi(N))-
exp(phi(N))); 
  
return; 

 
 
 
Problem 3: P6C5 
 
This problem involves using finite differences to solve a 2D convection-diffusion-
reaction problem involving three different species.  We begin by looking at the 
geometry of the problem (with the axis rotated 10 degrees): 
 

 
 
Since we have convection in our system, we need to solve for the flow profile.  
We first discretize our system, schematically shown in the figure below: 
 

 
 
Therefore if we discretize the y-axis into Ny grid points, we should be able to 
calculate a local velocity at each grid point in the y-direction.  We make a few 
assumptions: that there is no convective momentum transfer, that our flow is fully 
developed and we neglect entrance and exit effects, as well as edge effects 
orthogonal to the z-axis and y-axis.  Furthermore we assume that we have 
laminar flow and that there is no change in the thickness of the film so that the 

z 
y 

z 
y 

b

L



only velocity is along the z-axis.  Lastly we ignore any potential pressure gradient 
such that our flow is purely gravity driven.  Thus we have a very simple flow 
problem which can be solved analytically. 
 
Velocity 
 
Beginning with Navier-Stokes in 2D, which we can take from Deen p.229, we can 
eliminate the terms to have:  
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This can be solved analytically to yield: 
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Now we have the velocity which we can plug into our convective diffusion 
reaction equations.  
 
Concentration Field 
 
To solve the 2D concentration profile in this flowing film, we can use the same 
superimposed grid over this domain, and use finite difference approximations to 
make a calculation for each species at each given grid point.  We define three 2-
D matrices, one for each species in real space, meaning that these matrices will 
contain the concentration information in the geometry of the film.   The one 
difficulty that arises is that since FSOLVE requires initial guesses and equations 
in the form of a vector, we will have to create an indexing method for when we 
interchange between real and vector space.  We look at Fig 6.2 from Beers:  
 



 
So here we look at a 2D grid that captures the physical space of the problem.  In 
this solution we use a similar indexing method; except that we begin with an 
index of 1 in the top right corner, move right to left until index = Nz, where Nz is 
the number of grid points along the z-axis.  We then begin on the subsequent 
row at Nz + 1 and then move from right to left until we reach an index of 2Nz.  
This continues until we reach the bottom left corner with the index = NyNz, where 
Ny is the total number of grid points along the y-axis.  But because we physically 
have 3 equivalent matrices we need to incorporate an additional difference to our 
indexing method.  Our total number of indices will be on the order of 3(NzNy). 
 
Thus our final indexing method should be: 
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Where y = 1:Ny, z=1:Nz, and n = 1 for cA, n =2 for cB and n = 3 for cAB.  We 
label n in the following manner to decrease the bandwidth of the Jacobian, 
keeping the matrix sparse and improving computational time.  Remember that 
every time an additional dimension we do the following (using an example x-
axis): add 3*(x-1)NzNy, for x=1:Nx and that would allow you to incorporate a third 
dimension into your index.  To add a 4th dimension you add 3*(k-1)*NxNyNz, etc. 
 
Convection Diffusion Equation (with Reaction) 
 
Now that we have a way of getting between real space and vector space, in a 
method we call stacking and unstacking a vector, let’s look at the equations we 
are trying to solve.  To get the conservation equations we turn again to trusty 
Deen, this time p. 46.  Again we look for a steady state solution, and look at the 
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system in 2D.  Eliminating irrelevant terms, and filling in for the reaction term 
from the problem statement, we arrive at 3 PDEs describing each of our species: 
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We need to solve for their concentrations at each grid point but they are all 
coupled due to the reaction term.  Furthermore the boundary conditions for each 
species are different.  However the equations for the internal grid points are 
mostly of the same form, so in this region we look solely at species A and the 
same equations can be treated similarly for species B and AB. 
 
To numerically solve these coupled ODEs, we use a finite difference 
approximation.  We imagine that we have a matrix CA that contains that value of 
concentration at each discretized grid point.  We further have a vector y, of length 
Ny, that stores the real-space value of y, a vector z, of length Nz, that stores the 
real-space value of z, and a vector vz that stores the real value of velocity at that 
some specified value of y. 
 
We begin with the convection term:  As discussed in class, we learned that 
upwind differencing has an important impact on the numerical stability of our 
solution for certain local Peclet numbers.  Thus for our convection term, using CA, 
as an initial example, we will write:  
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Where m is the index associated with the y-axis and n is the index associated 
with the z-axis.  Similar equations can be derived fro species B and AB.  We also 
derive the second derivative diffusion equations for both the z and y axes: 
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These can also be done for the other species as well.  Lastly we incorporate the 
reaction term: 
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Substituting these representations into the terms in the PDEs, we arrive at 
nonlinear algebraic equations in the form of the following 
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We make some simple assignment calls: 
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And now to define some of the A_coefficients: 
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These coefficients are easy to calculate if we are passed the value of the indices 
m and n, given the vectors z and y and we write a function to take care of this.  
Similar equations can be written for the matrices of cB and cAB with the one 
difference in cAB, that the reaction term rR is added rather than subtracted. 
 
We need to remember to pass along values of the Jacobian, because this will 
significantly reduce the amount of computation time.  Luckily the Jacobian is 
easy to calculate.  Since each equation is dependent on only at most seven 
variables, it is fairly straight forward to calculate these values.  We go through 
and determine the non-zero elements for the equation f(index(m,n)): 
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For species B and AB, there will be slight modifications to equations (32) and 
(33), but it remains fairly straightforward.  In this manner we can handle all of the 
interior boundary points. 
 
Boundary Conditions 
 
Like most PDEs, the boundary conditions dictate what the solution winds up 
looking like.  In our problem here we have boundary conditions for each species 
at each edge of the domain.  The problem is further complicated by at the 
corners where multiple boundary conditions arise from the joining of boundaries 



along both axes.  We begin by looking at the edges, neglecting the corners for 
now and go into detail into how we handle the boundaries. 
 
Let’s begin by looking at the right edge, where the flow of material enters at 
concentrations of cA = 0, cB = 1 M, cAB = 0.  This is a Dirichlet boundary 
condition for all species and is relatively easy to handle.  We simply replace the 
value of concentration at the imaginary grid point to the right of our domain, with 
the specified concentration.  For example: 
 

( ) RmAmAmAmA rCACAACACAindexf −++++= −+ 1,15)1,1(43)2,(2)1,(1 )0()(    (38) 
 

( ) RmBmBmBmB rCACAMACACAindexf −++++= −+ 1,15)1,1(43)2,(2)1,(1 )1()(   (39) 
 
The equation for cAB would be something similar to (38).  It is relatively easy to 
handle Dirichlet conditions.  Of course the Jacobian matrix will have to be 
modified to reflect this change.  In the above examples illustrated in equation (38) 
and (39), the terms which are now set to constants have Jacobian values which 
are equal to zero there. 
 
Now at the left edge, we specify that there will be no change in the concentration 
as a function of z any more.  This condition is somewhat klugy because we don’t 
know if in fact this is the case, but because we do not know the final 
concentrations a priori, we substitute Neumann conditions in as a reasonable 
guess.  In practice we might invoke Danckwert’s BCs and let the parameters of 
the problem dictate the behavior at the edge.  We invoke the same treatment of 
boundary conditions that we used to arrive at eqn (12).  However the use of 
Lagrange polynomials gets much more complicated.  If we assume that we have 
a locally uniform grid spacing, we can still use the same analysis and arrive at a 
similar expression: 
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We can rearrange again to get a value for the imaginary grid point to the right of 
left of the grid.  So the effect of the treatment of the Neumann BC, is to solve for 
a value of CA(m,Nz+1) and replace this value, which depends solely on the values of 
CA(m,Nz) and cA(m,Nz-1), into the equation for that grid point.  This is similarly done for 
CB and CAB since they all have Neumann conditions here. 
 
The Jacobians are similarly modified with the exceptions that the term relating to 
the imaginary grid point (m,Nz+1), is now set equal to zero, and the Jacobian 
terms involving grid points (m,Nz) and (m,Nz-1) now have an additional factor of 
4/3(D/dz2) and -1/3(D/dz2), respectively. 
 



Next we examine the top boundary conditions.  In class, professor Beers 
discussed some of the difficulties in handling this particular boundary condition.  
A truly physical problem would either invoke a Neumann condition which 
reflected volatilization of species AB and B into the air, or invoke a Dirichlet 
condition which would take into account the partial pressure of AB and B in the 
atmosphere.  We choose to look at the simplified version in which the 
concentrations of B and AB are = 0 (thus Dirichlet conditions).  However 
choosing to use no flux (Neumann conditions) will also be considered correct. 
 
We’ve already seen both of these conditions now.  The Dirichlet conditions are 
easy to implement, in that for the imaginary grid point above the grid, you replace 
the concentration with the constant value specified at the boundary condition.  
The No flux condition is similarly implemented and is comparable to what we see 
in equation (40).  The key thing to remember now is that you have a no-flux 
condition in the y direction so the additional factors that are added to grid points 
(1,n) and (2,n) are now 4/3(D/dy2) and -1/3(D/dy2), respectively.  The bottom 
boundary conditions are handled as no-flux conditions (no penetration into the 
plate) and can be treated exactly the same as the top condition if you choose to 
use the Neumann condition. 
 
So what about the corners?  The corners just happen to have boundary 
conditions in both axes and you can incorporate them sequentially.  The only one 
that is a little tricky and you need to remember, is that if you have two Neumann 
conditions, you need to remember that there are two contributions to the central 
grid point: 4/3(D/dy2) and 4/3(D/dz2).  With these in place, you will have specified 
all the internal grid points along with all of the edge points. 
 
Code that could handle this might be something like: 
 

% benwang_P6C5.m 
% Ben Wang 
% HW#7 Problem #3 
% due 11/7/05 9 am 
  
% Holy crap.  Solving a couple of fluid and transport problem 
  
% ======= main routine benwang_P6C5.m 
function iflag_main = benwang_P6C5(); 
  
iflag_main = 0; 
  
%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 
  
%PDL> specify parameters 
param.pA = 1e-4;                        % [atm] 
param.HA = 1e3;                         % [M/atm] 
param.k = 1e-2;                         % [L/mol-s] 
param.K = 1e3;                           



param.D = 1e-5/(1e2)^2;                 % [m^2/s] 
param.b = 1e-3;                         % [m] 
param.L = 50e-2;                        % [m] 
param.mu = 1e-3;                        % [Pa] 
param.rho = 1e3;                        % [kg/m^3] 
param.theta = 80/180*pi;                % [rad] 
param.g = 9.8;                          % [m/s^2] 
param.CB0 = 1;                          % [M] 
  
%PDL> specify grid parameters 
  
grid.z = 10;                            % number of grid points along the flow direction 
grid.y1 = 20;                            % number of grid points in the orthogonal to flow 
grid.y2 = 11 ; 
grid.y = grid.y1 + grid.y2 -1; 
  
grid.dz = param.L/(grid.z+1); 
  
y1 = linspace(0,param.b/30,grid.y1); 
y2 = linspace(param.b/30, param.b, grid.y2); 
  
%PDL> initialize 3D matrix, where out of the plane we have the different 
%speciesd efine index for 2D grid, here we move from right to left, top to bottom, 
% to keep the convention of the diagram 
  
c = zeros(grid.y,grid.z,3); 
cA = c(:,:,1); 
cB = c(:,:,2); 
cAB = c(:,:,3); 
  
%PDL> calculate flow velocity 
  
z = linspace(0, param.L, grid.z); 
grid.y_vector = [y1 y2(2:end)]; 
grid.z_vector = linspace(0,param.L,grid.z); 
y = grid.y_vector; 
param.vel = calc_vel(grid.y_vector,param); 
  
%PDL> collapse matricex into a single vector 
  
guess = zeros(3*grid.y*grid.z,1); 
  
for i = 1:grid.y 
    for j = 1:grid.z 
        for k = 1:3 
            index = 3*((i-1)*grid.z + (j-1)) + k; 
            if k == 2 
                guess(index) = param.CB0; 
            else 
            end 
        end 
    end 
end 



  
%PDL> Call Fsolve 
options = optimset('Jacobian','on'); 
[x, f] = fsolve(@calc_func_P6C5, guess, options, param, grid); 
  
%PDL> extract results 
  
for i = 1:grid.y 
    for j = 1:grid.z 
         
        index_cA = 3*(i-1)*grid.z + 3*(j-1) + 1; 
        index_cB = 3*(i-1)*grid.z + 3*(j-1) + 2; 
        index_cAB = 3*(i-1)*grid.z + 3*(j-1) + 3; 
         
        cA(i,j) = x(index_cA); 
        cB(i,j) = x(index_cB); 
        cAB(i,j) = x(index_cAB); 
    end 
end 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cA); 
shading('interp'); 
colorbar; 
title('Concentration of cA with Dirichlet Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cB); 
shading('interp'); 
colorbar; 
title('Concentration of cB with Dirichlet Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cAB); 
shading('interp'); 
colorbar; 
title('Concentration of cAB with Dirichlet Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
semilogy(z,cA(1,:),'s'); 
hold on; 
semilogy(z,cB(1,:),'.'); 
semilogy(z,cAB(1,:),'-'); 
title('Concentration at surface Dirichlet Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
legend('cA','cB','cAB'); 
  



cAB = cAB(1:20,:); 
cA = cA(1:20,:); 
cB = cB(1:20,:); 
  
y = grid.y_vector(1:20); 
  
figure; 
pcolor(param.L-z,param.b-y,cAB); 
shading('interp'); 
colorbar; 
title('Concentration of cAB with Dirichlet Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-y,cA); 
shading('interp'); 
colorbar; 
title('Concentration of cA with Dirichlet Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-y,cB); 
shading('interp'); 
colorbar; 
title('Concentration of cB with Dirichlet Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
  
flux = zeros(length(z),1); 
cA_int = zeros(length(z),1); 
  
for i = 1:length(z) 
    flux(i) = (-3*param.HA*param.pA+4*cA(1,i)-cA(2,i))/(2*(y(2)-y(1)))+... 
        (0 + 4*cAB(1,i)-cAB(2,i))/(2*(y(2)-y(1))); 
    cA_int(i) = trapz(y,cA(:,i))+trapz(y,cAB(:,i)); 
end 
  
flux_A_surface = -trapz(z,flux)*param.D/param.L 
integral_A_AB = trapz(z,cA_int)/param.L/param.b/100 
  
return; 
  
%======= subroutine calc_volflow.m 
function f = calc_vel(y,param) 
f = zeros(1, length(y)); 
constant = param.rho*param.g*cos(param.theta)/param.mu; 
f = -constant*y.^2+1e-6*constant; 
return 
%======= subroutine calc_coeff_P6C5.m 
function [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
  



y = grid.y_vector; 
z = grid.z_vector; 
v = param.vel; 
D = param.D; 
  
if m==1 
    dy_mid = y(2)-y(1); 
    dy_lo = dy_mid; 
    dy_hi = dy_mid; 
elseif m == grid.y 
    dy_mid = y(end) - y(end-1); 
    dy_lo = dy_mid; 
    dy_hi = dy_mid; 
else 
    dy_mid = (y(m+1)-y(m-1))/2; 
    dy_lo = y(m)-y(m-1); 
    dy_hi = y(m+1)-y(m); 
end 
  
if n==1 
    dz_mid = (z(2)-z(1)); 
    dz_hi = dz_mid; 
    dz_lo = dz_mid; 
elseif n == grid.z 
    dz_mid = z(end)-z(end-1); 
    dz_lo = dz_mid; 
    dz_hi = dz_mid; 
else 
    dz_mid = (z(n+1)-z(n-1))/2; 
    dz_lo = z(n)-z(n-1); 
    dz_hi = z(n+1)-z(n); 
end 
  
A1 = -v(m)/dz_lo-D/dz_mid*(dz_hi^-1+dz_lo^-1)-D/dy_mid*(dy_hi^-1+dy_lo^-1); 
A2 = D/dy_mid/dy_hi; 
A3 = D/dy_mid/dy_lo; 
A4 = D/dz_mid/dz_hi; 
A5 = v(m)/dz_lo + D/dz_mid/dz_lo; 
  
if k==3 
    rR = param.k; 
else 
    rR = -param.k; 
end 
  
return 
%======= subroutine calc_bc_coeff.m 
function [BC1, BC2, BC3, BC4, BC5] = calc_bc_coeff(m,n,k,param,grid); 
  
[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
  
y = grid.y_vector; 
z = grid.z_vector; 
v = param.vel; 



  
BC1 = 0; 
BC2 = 0; 
BC3 = 0; 
BC4 = 0; 
BC5 = 0; 
  
y_BC = A2; 
z_BC = A4; 
  
% right boundary condtion (Dirichlet) 
  
if n == 1 
    if k == 1 
        BC5 = 0; 
    elseif k == 2 
        BC5 = param.CB0*A5; 
    elseif k == 3 
        BC5 = 0; 
    end 
end 
  
% left boundary condition (Neumann) 
  
if n == grid.z 
    BC1 = BC1 + 4/3*z_BC; 
    BC4 = 0; 
    BC5 = BC5 - 1/3*z_BC; 
end 
  
% upper boundary condition (Dirichlet) 
  
if m == 1 
    if k == 1 
        BC3 = param.HA*param.pA*y_BC; 
    elseif k == 2 
        BC3 = 0; 
    elseif k == 3 
        BC3 = 0; 
    end 
end 
  
% lower boundary condition (Neumann) 
  
if m == grid.y 
    BC1 = BC1 + 4/3*y_BC; 
    BC2 = 0; 
    BC3 = BC3 - 1/3*y_BC; 
end 
  
return 
  
%======= subroutine get_Jac_indices.m 



function [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid); 
  
index = 3*((m-1)*grid.z + (n-1)) + k; 
p = index; 
if k == 1 
    p2 = index+1; 
    p3 = index+2; 
elseif k==2 
    p2 = index-1; 
    p3 = index+1; 
else 
    p2 = index-2; 
    p3 = index-1; 
end 
  
p4 = index+3*grid.z; 
p5 = index-3*grid.z; 
p6 = index+3; 
p7 = index-3; 
  
return 
  
%======= subroutine calc_func_P6C5.m 
function [f, Jac] = calc_func_P6C5(x0, param, grid) 
%function [f] = calc_func_P6C5(x0, param, grid) 
f = zeros(length(x0),1); 
v = param.vel; 
% extract vector into more physical format 
  
c = zeros(grid.y,grid.z,3); 
  
Jac = spalloc(length(x0),length(x0),7*length(x0)); 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 
            c(m,n,k) = x0(index_c); 
        end 
    end 
end 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
         
            [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
            [BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid); 
  
            % get function index 
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 
            % top condition 
            if m == 1 
                % upper right condition (2 Dirichlet) 



                if n == 1 
                    f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + BC3 + A4*c(m,n+1,k) + ... 
                        BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                % upper left condition (1 Dirichlet and 1 Neumann) 
                elseif n == grid.z 
                    f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + BC3 + ... 
                        (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    % purely top condition (Dirichlet) 
                    f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + BC3 + A4*c(m,n+1,k) + ... 
                        A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
                % bottom boundary condition 
            elseif m == grid.y 
                if n == 1 
                    % lower right condition (1 Dirichlet and 1 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ... 
                        BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                elseif n == grid.z 
                    % lower left condition (2 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + (A5+BC5)*c(m,n-
1,k) + ... 
                        rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    % bottom condition (1 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ... 
                        A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
            else 
                % right boundary (Dirichlet) 
                if n == 1 
                    f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ... 
                        A4*c(m,n+1,k) + BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                    %left boundary (Neumann) 
                elseif n == grid.z 
                    f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ... 
                        (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    %interior grid points 
                f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) +... 
                    A4*c(m,n+1,k) + A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
            end 
        end 
    end 
end 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
            [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid); 
             
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 
            [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c); 
            if (index_c <= 3*grid.z) | (index_c >= length(x0)-3*grid.z) 



                if (index_c <= 3*grid.z) 
                    if (index_c <= 3) 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p4) = c4; 
                        Jac(p,p6) = c6; 
                    else 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p4) = c4; 
                        Jac(p,p6) = c6; 
                        Jac(p,p7) = c7; 
                    end 
                elseif (index_c >= length(x0)-3*grid.z) 
                    if (index_c >= length(x0) - 3) 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p5) = c5; 
                        Jac(p,p7) = c7; 
                    else 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p5) = c5; 
                        Jac(p,p6) = c6; 
                        Jac(p,p7) = c7; 
                    end 
                end 
            else 
                Jac(p,p) = c1; 
                Jac(p,p2) = c2; 
                Jac(p,p3) = c3; 
                Jac(p,p4) = c4; 
                Jac(p,p5) = c5; 
                Jac(p,p6) = c6; 
                Jac(p,p7) = c7; 
            end 
        end 
    end 
end 
  
spy(Jac) 
return 
  
% ====== subroutine get_jac_const.m 
  
function [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c) 
  
[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
[BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid); 
  
if k == 1 



    c1 = A1 + rR*c(m,n,2); 
    c2 = rR*c(m,n,1); 
    c3 = -rR/param.K; 
elseif k == 2 
    c1 = A1 + rR*c(m,n,1); 
    c2 = rR*c(m,n,2); 
    c3 = -rR/param.K; 
elseif k == 3 
    c1 = A1 - rR/param.K; 
    c2 = rR*c(m,n,2); 
    c3 = rR*c(m,n,1); 
end 
  
if m == 1 
    if n == 1 
        c4 = A2; 
        c5 = 0; 
        c6 = A4; 
        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = A2; 
        c5 = 0; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c4 = A2; 
        c5 = 0; 
        c6 = A4; 
        c7 = A5; 
    end 
elseif m == grid.y 
    if n == 1 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = A4; 
        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = A4; 
        c7 = A5; 
    end 
else 
    if n == 1 
        c4 = A2; 
        c5 = A3; 
        c6 = A4; 



        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = A2; 
        c5 = A3; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c4 = A2; 
        c5 = A3; 
        c6 = A4; 
        c7 = A5; 
    end 
end 
  
return 

  
  
 
 
 
The steady state concentration profiles for each species might look like (note 
despite the numerical values, the origin of these charts are in the upper right with 
flow traveling from right to left): 
 

 
 



 
 

 
 
We notice immediately, that most of the action occurs very close to the surface, 
which makes sense, since we have a pretty fast velocity with relatively slow 
diffusion.  Because of this, we take advantage of uneven grid spacing to run our 
simulation, with a finer mesh close to the surface.  We note that if the values at 
the surface continue to change as we increase the mesh then the grid spacing is 
not tight enough.   If you pass FSOLVE either the sparsity pattern of the 
Jacobian, or the Jacobian, itself you could run a pretty accurate simulation in a 
reasonable time.  If you would be able to do this and look at the simulation only 
close to the surface, you might get graphs such as these (blown up near the 
region of interest) 
 



 
 

 
 



 
 
Remember that the origin is on the upper right corner. 
 
Absorption Rate 
 
We are also asked for the average absorption rate per unit area.  Since the goal 
of the problem was to increase the amount of absorption of A from the gas 
stream, by the addition of a reactive falling film, we’d like to determine how much 
extra A gets into the stream.  We can do this in one of two ways.  We can 
calculate the ‘flux’ of A at the interface of liquid and gas.  We can also integrate 
the total amount of A in the film, and normalize it to some unit length. 
 
Let’s look at the flux of A at the interface.  We again use the equation from page 
376.  We now plug in certain values and integrate over the length of the film: 
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If we do a full integration of all the A in the film, we just do a 2-D integration 
across y and z of all cA and cAB. 
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We accomplish these integrations using trapz.  We are asked to calculate these 
mean absorption rates and we note that we get the following values: 



 
flux_A_surface = 
 
  5.7474e-006 
 
 
integral_A_AB = 
 
  1.1339e-005 
 

We compare this with the rate constant k, set to 0.   
 

flux_A_surface = 
 
  5.7474e-006 
 
 
integral_A_AB = 
 
  1.1339e-005 
 

When look at the two, we see no improvement.  This makes sense because we 
have effectively locked in all the material by specifying no flux at the right and 
bottom of A, as well as a specified concentration at top.  Therefore, the reaction 
term serves to only change species A  AB. 
 
By changing the top boundary condition to a no-flux condition, we can get an 
improvement in absorption.  To get to this boundary condition, it is just to apply 
our standard 4/3 – 1/3 treatment as per before (the code is very similar, but is 
included at the end for your perusal if you wish).  For further consideration of the 
Neumann condition, you might get numbers on the order of these (note that the 
number here were calculated for different grid spacings, which result in different 
absolute numbers).   
 
Neumann boundary conditions (no flux at surface for AB, B): 
 
 

flux_A_surface = 
 
  5.7495e-006 
 
 
integral_A_AB = 
 
  1.1349e-005 

 



We compare this with the rate constant k, set to 0.   
 
flux_A_surface = 
 
  5.7474e-006 
 
 
integral_A_AB = 
 
  1.1339e-005 
 

So it is acceptable for the Dirichlet boundary condition to see no relative increase 
in extraction… this is because much of that AB (and B, for that matter) has 
evaporated off into the air. We’d need to model that as well in order to get a fuller 
picture of what has happened. As Dr. Beers pointed out in class, a way to 
inelegantly force things to look like we’d like is to apply the Neumann condition 
for AB and B… in this case, we see an increase in extractive potential. We note 
that it is small, though this may be expected because the reaction is relatively 
slow (less than 0.1 M/s) and the fluid is flowing fast (0.8 m/s) over a short span 
(0.5 m). If you were to crank up the value of the reaction constant k, you’d see a 
significant improvement of extraction for the reactive extraction. And here are 
plots and code… first for Dirichlet boundary conditions, then for von Neumann 
boundary conditions. 
 
Note that different rate constants and top boundary conditions do not actually 
change the graphs all that much, at least visually.  So the graphs should be 
about the same if you chose either boundary condition, so the others are not 
included here.  You can compare against part 2 of this solution, also attached 
provided on MIT server. 
 

% benwang_P6C5.m 
% Ben Wang 
% HW#7 Problem #3 
% due 11/7/05 9 am 
  
% Holy crap.  Solving a couple of fluid and transport problem 
  
% ======= main routine benwang_P6C5.m 
function iflag_main = benwang_P6C5(); 
  
iflag_main = 0; 
  
%PDL> clear graphs, screen etc. general initialization 
clear all; close all; clc; 
  
%PDL> specify parameters 
param.pA = 1e-4;                        % [atm] 
param.HA = 1e3;                         % [M/atm] 
param.k = 1e-2;                         % [L/mol-s] 



param.K = 1e3;                           
param.D = 1e-5/(1e2)^2;                 % [m^2/s] 
param.b = 1e-3;                         % [m] 
param.L = 50e-2;                        % [m] 
param.mu = 1e-3;                        % [Pa] 
param.rho = 1e3;                        % [kg/m^3] 
param.theta = 80/180*pi;                % [rad] 
param.g = 9.8;                          % [m/s^2] 
param.CB0 = 1;                          % [M] 
  
%PDL> specify grid parameters 
  
grid.z = 10;                            % number of grid points along the flow direction 
grid.y1 = 20;                            % number of grid points in the orthogonal to flow 
grid.y2 = 11 ; 
grid.y = grid.y1 + grid.y2 -1; 
  
grid.dz = param.L/(grid.z+1); 
  
y1 = linspace(0,param.b/30,grid.y1); 
y2 = linspace(param.b/30, param.b, grid.y2); 
  
%PDL> initialize 3D matrix, where out of the plane we have the different 
%speciesd efine index for 2D grid, here we move from right to left, top to bottom, 
% to keep the convention of the diagram 
  
c = zeros(grid.y,grid.z,3); 
cA = c(:,:,1); 
cB = c(:,:,2); 
cAB = c(:,:,3); 
  
%PDL> calculate flow velocity 
  
z = linspace(0, param.L, grid.z); 
grid.y_vector = [y1 y2(2:end)]; 
grid.z_vector = linspace(0,param.L,grid.z); 
y = grid.y_vector; 
param.vel = calc_vel(grid.y_vector,param); 
  
%PDL> collapse matricex into a single vector 
  
guess = zeros(3*grid.y*grid.z,1); 
  
for i = 1:grid.y 
    for j = 1:grid.z 
        for k = 1:3 
            index = 3*((i-1)*grid.z + (j-1)) + k; 
            if k == 2 
                guess(index) = param.CB0; 
            else 
            end 
        end 
    end 
end 



  
%PDL> Call Fsolve 
options = optimset('Jacobian','on'); 
[x, f] = fsolve(@calc_func_P6C5, guess, options, param, grid); 
  
%PDL> extract results 
  
for i = 1:grid.y 
    for j = 1:grid.z 
         
        index_cA = 3*(i-1)*grid.z + 3*(j-1) + 1; 
        index_cB = 3*(i-1)*grid.z + 3*(j-1) + 2; 
        index_cAB = 3*(i-1)*grid.z + 3*(j-1) + 3; 
         
        cA(i,j) = x(index_cA); 
        cB(i,j) = x(index_cB); 
        cAB(i,j) = x(index_cAB); 
    end 
end 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cA); 
shading('interp'); 
colorbar; 
title('Concentration of cA with Neumann Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cB); 
shading('interp'); 
colorbar; 
title('Concentration of cB with Neumann Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-grid.y_vector,cAB); 
shading('interp'); 
colorbar; 
title('Concentration of cAB with Neumann Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
semilogy(z,cA(1,:),'s'); 
hold on; 
semilogy(z,cB(1,:),'.'); 
semilogy(z,cAB(1,:),'-'); 
title('Concentration at surface Neumann Condition'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
legend('cA','cB','cAB'); 
  



cAB = cAB(1:20,:); 
cA = cA(1:20,:); 
cB = cB(1:20,:); 
  
y = grid.y_vector(1:20); 
  
figure; 
pcolor(param.L-z,param.b-y,cAB); 
shading('interp'); 
colorbar; 
title('Concentration of cAB with Neumann Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-y,cA); 
shading('interp'); 
colorbar; 
title('Concentration of cA with Neumann Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
figure; 
pcolor(param.L-z,param.b-y,cB); 
shading('interp'); 
colorbar; 
title('Concentration of cB with Neumann Condition (Blown Up)'); 
ylabel('y (m)'); 
xlabel('z (m)'); 
  
flux = zeros(length(z),1); 
cA_int = zeros(length(z),1); 
  
for i = 1:length(z) 
    flux(i) = (-3*param.HA*param.pA+4*cA(1,i)-cA(2,i))/(2*(y(2)-y(1)))+... 
        (4*cAB(1,i)-cA*2,i)/(2*(y(2)-y(1))); 
    cA_int(i) = trapz(y,cA(:,i))+trapz(y,cAB(:,i)); 
end 
  
flux_A_surface = -trapz(z,flux)*param.D/param.L 
integral_A_AB = trapz(z,cA_int)/param.L/param.b/100 
  
return; 
  
%======= subroutine calc_volflow.m 
function f = calc_vel(y,param) 
f = zeros(1, length(y)); 
constant = param.rho*param.g*cos(param.theta)/param.mu; 
f = -constant*y.^2+1e-6*constant; 
return 
%======= subroutine calc_coeff_P6C5.m 
function [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
  
y = grid.y_vector; 



z = grid.z_vector; 
v = param.vel; 
D = param.D; 
  
if m==1 
    dy_mid = y(2)-y(1); 
    dy_lo = dy_mid; 
    dy_hi = dy_mid; 
elseif m == grid.y 
    dy_mid = y(end) - y(end-1); 
    dy_lo = dy_mid; 
    dy_hi = dy_mid; 
else 
    dy_mid = (y(m+1)-y(m-1))/2; 
    dy_lo = y(m)-y(m-1); 
    dy_hi = y(m+1)-y(m); 
end 
  
if n==1 
    dz_mid = (z(2)-z(1)); 
    dz_hi = dz_mid; 
    dz_lo = dz_mid; 
elseif n == grid.z 
    dz_mid = z(end)-z(end-1); 
    dz_lo = dz_mid; 
    dz_hi = dz_mid; 
else 
    dz_mid = (z(n+1)-z(n-1))/2; 
    dz_lo = z(n)-z(n-1); 
    dz_hi = z(n+1)-z(n); 
end 
  
A1 = -v(m)/dz_lo-D/dz_mid*(dz_hi^-1+dz_lo^-1)-D/dy_mid*(dy_hi^-1+dy_lo^-1); 
A2 = D/dy_mid/dy_hi; 
A3 = D/dy_mid/dy_lo; 
A4 = D/dz_mid/dz_hi; 
A5 = v(m)/dz_lo + D/dz_mid/dz_lo; 
  
if k==3 
    rR = param.k; 
else 
    rR = -param.k; 
end 
  
return 
%======= subroutine calc_bc_coeff.m 
function [BC1, BC2, BC3, BC4, BC5] = calc_bc_coeff(m,n,k,param,grid); 
  
[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
  
y = grid.y_vector; 
z = grid.z_vector; 
v = param.vel; 
  



BC1 = 0; 
BC2 = 0; 
BC3 = 0; 
BC4 = 0; 
BC5 = 0; 
  
y_BC = A2; 
z_BC = A4; 
  
% right boundary condtion (Dirichlet) 
  
if n == 1 
    if k == 1 
        BC5 = 0; 
    elseif k == 2 
        BC5 = param.CB0*A5; 
    elseif k == 3 
        BC5 = 0; 
    end 
end 
  
% left boundary condition (Neumann) 
  
if n == grid.z 
    BC1 = BC1 + 4/3*z_BC; 
    BC4 = 0; 
    BC5 = BC5 - 1/3*z_BC; 
end 
  
% upper boundary condition (Neumann) 
  
if m == 1 
    if k == 1 
        BC3 = param.HA*param.pA*y_BC; 
    elseif k == 2 
        BC1 = BC1 + 4/3*z_BC; 
        BC2 = BC2 - 1/3*z_BC; 
    elseif k == 3 
        BC1 = BC1 + 4/3*z_BC; 
        BC2 = BC2 - 1/3*z_BC; 
    end 
end 
  
% lower boundary condition (Neumann) 
  
if m == grid.y 
    BC1 = BC1 + 4/3*y_BC; 
    BC2 = 0; 
    BC3 = BC3 - 1/3*y_BC; 
end 
  
return 
  
%======= subroutine get_Jac_indices.m 



function [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid); 
  
index = 3*((m-1)*grid.z + (n-1)) + k; 
p = index; 
if k == 1 
    p2 = index+1; 
    p3 = index+2; 
elseif k==2 
    p2 = index-1; 
    p3 = index+1; 
else 
    p2 = index-2; 
    p3 = index-1; 
end 
  
p4 = index+3*grid.z; 
p5 = index-3*grid.z; 
p6 = index+3; 
p7 = index-3; 
  
return 
  
%======= subroutine calc_func_P6C5.m 
function [f, Jac] = calc_func_P6C5(x0, param, grid) 
%function [f] = calc_func_P6C5(x0, param, grid) 
f = zeros(length(x0),1); 
v = param.vel; 
% extract vector into more physical format 
  
c = zeros(grid.y,grid.z,3); 
  
Jac = spalloc(length(x0),length(x0),7*length(x0)); 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 
            c(m,n,k) = x0(index_c); 
        end 
    end 
end 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
         
            [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
            [BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid); 
  
            % get function index 
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 
            % top condition 
            if m == 1 
                % upper right condition (1 Dirichlet 1 Neumann) 



                if n == 1 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 + 
A4*c(m,n+1,k) + ... 
                        BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                % upper left condition (2 Neumann) 
                elseif n == grid.z 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 + ... 
                        (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    % purely top condition (Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 + 
A4*c(m,n+1,k) + ... 
                        A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
                % bottom boundary condition 
            elseif m == grid.y 
                if n == 1 
                    % lower right condition (1 Dirichlet and 1 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ... 
                        BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                elseif n == grid.z 
                    % lower left condition (2 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + (A5+BC5)*c(m,n-
1,k) + ... 
                        rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    % bottom condition (1 Neumann) 
                    f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ... 
                        A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
            else 
                % right boundary (Dirichlet) 
                if n == 1 
                    f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ... 
                        A4*c(m,n+1,k) + BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                    %left boundary (Neumann) 
                elseif n == grid.z 
                    f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ... 
                        (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                else 
                    %interior grid points 
                f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) +... 
                    A4*c(m,n+1,k) + A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K); 
                end 
            end 
        end 
    end 
end 
  
for m = 1:grid.y 
    for n = 1:grid.z 
        for k = 1:3 
            [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid); 
             
            index_c = 3*((m-1)*grid.z + (n-1)) + k; 



            [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c); 
            if (index_c <= 3*grid.z) | (index_c >= length(x0)-3*grid.z) 
                if (index_c <= 3*grid.z) 
                    if (index_c <= 3) 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p4) = c4; 
                        Jac(p,p6) = c6; 
                    else 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p4) = c4; 
                        Jac(p,p6) = c6; 
                        Jac(p,p7) = c7; 
                    end 
                elseif (index_c >= length(x0)-3*grid.z) 
                    if (index_c >= length(x0) - 3) 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p5) = c5; 
                        Jac(p,p7) = c7; 
                    else 
                        Jac(p,p) = c1; 
                        Jac(p,p2) = c2; 
                        Jac(p,p3) = c3; 
                        Jac(p,p5) = c5; 
                        Jac(p,p6) = c6; 
                        Jac(p,p7) = c7; 
                    end 
                end 
            else 
                Jac(p,p) = c1; 
                Jac(p,p2) = c2; 
                Jac(p,p3) = c3; 
                Jac(p,p4) = c4; 
                Jac(p,p5) = c5; 
                Jac(p,p6) = c6; 
                Jac(p,p7) = c7; 
            end 
        end 
    end 
end 
  
spy(Jac) 
return 
  
% ====== subroutine get_jac_const.m 
  
function [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c) 
  
[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid); 
[BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid); 



  
if k == 1 
    c1 = A1 + rR*c(m,n,2); 
    c2 = rR*c(m,n,1); 
    c3 = -rR/param.K; 
elseif k == 2 
    c1 = A1 + rR*c(m,n,1); 
    c2 = rR*c(m,n,2); 
    c3 = -rR/param.K; 
elseif k == 3 
    c1 = A1 - rR/param.K; 
    c2 = rR*c(m,n,2); 
    c3 = rR*c(m,n,1); 
end 
  
if m == 1 
    if n == 1 
        c1 = c1 + BC1; 
        c4 = A2 + BC2; 
        c5 = 0; 
        c6 = A4; 
        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = A2 + BC2; 
        c5 = 0; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c4 = A2 + BC2; 
        c5 = 0; 
        c6 = A4; 
        c7 = A5; 
    end 
elseif m == grid.y 
    if n == 1 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = A4; 
        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c1 = c1 + BC1; 
        c4 = 0; 
        c5 = A3 + BC3; 
        c6 = A4; 
        c7 = A5; 
    end 
else 



    if n == 1 
        c4 = A2; 
        c5 = A3; 
        c6 = A4; 
        c7 = 0; 
    elseif n == grid.z 
        c1 = c1 + BC1; 
        c4 = A2; 
        c5 = A3; 
        c6 = 0; 
        c7 = A5 + BC5; 
    else 
        c4 = A2; 
        c5 = A3; 
        c6 = A4; 
        c7 = A5; 
    end 
end 
  
return 

 
 
 


