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Problem 1: 8.A.1

We are asked to set up the linear algebraic equations to obtain a least squares
parameter estimate. Our linearized model is of the form:

log,, Nu =log,, , + 2, log,, Re+ «, log,, Pr (1)
Using our standard notation, our response, y, is a measured value of Nu

y = log,, Nu = log[1.9676;0.8986,0.4261;2.5098;1.1521;0.5520]  (2)

Our input parameters are the values of Re and Pr. Taking the log of these
values we use them in our predictor matrix (design matrix) which has the form of:

1 0 -03147]
1 -1 -03147
1 -2 -03147
X = 3)
1 0 0.4055
1 -1 0.4055
1 -2 04055

And our parameters that we’d like to fit, according to our linear model are:

log,, &,

The system of equations to solve, we get from equation (8.23) from Beers:

(x"x)p, =x"y (5)

This looks very similar to our old friend Ax = b, where X' X = 4 and XTZ =b.
Now we just use Gaussian elimination to solve this set of equations:



0, =A\b (6)

Working out all the algebra we get the following system of equations:

1
1 -1 -0.3147
1 1 1 1 1 1
. 1 -2 -0.3147
A=X"X = 0 -1 -2 0 -1 -2
1 0 04055
-03147 -0.3147 —0.3147 0.4055 0.4055 0.4055
1 1  0.4055
1 -2 0.4055 |
6 -6 0.1182
-6 10 ~0.1182

0.1182 -0.1182 0.1491

[ 0.2939 |
-1 —0.0464
1 1 1 1 1 1
—-0.3705
b= 0 -1 -2 0 -1 -2 =
0.3996
-0.3147 -0.3147 -0.3147 0.4055 0.4055 0.4055
- 0.0615
| —0.2581 |
0.0801
1.2420
0.0526
Plugging these values in, we get to:
6 -6 0.1182 | log,, @, 0.0801
-6 10 -0.1182 a, =11.2420 (7)
0.1182 -0.1182 0.1491 a, 0.0526

Solving via Gaussian elimination by hand

6 -6 0.1182 | 0.0801
-6 10 —0.1182 | 1.2420
0.1182 —-0.1182 0.1491 | 0.0526

0 —0.3147]




First we determine 4, :% =—1. Now we take [row 2] — A1 [row1]
11

6 -6 0.1182 | 0.0801
0 4 0 1.3221
0.1182 —-0.1182 0.1491 || 0.0526

next we determine 4, = % =0.0197. Now we take [row 3] - A3 [row1]
11

6 -6 0.1182]0.0801
0 4 0 1.3221
0 O 0.1468] 0.0510

We are fortunate that this is all the elimination we need to do. Using backward
substitution:

log,, &, 0.3370
=| o |=]0.3305 (8)
a, 0.3475

—LS

So these are the parameters that minimize the least squared error. Now we are
asked to find the 95% confidence intervals. The 95% confidence interval can be
calculated using equation (8.132) from Beers:

1/2
1
0,=06,,+ Tm/zs{[XTXbM } } 9)

Vi

For each of the parameters, all we have to know is the sample variance, the
appropriate T-distribution value for a given v and o, and the diagonals of (X' X)".

(X"X)is calculated from (X" x \x"x)' =1

6 —6  oms2 ] (x"x) ' (x"x) e (x"x) | [1 0 0
-6 10 —ons2| (x"x)u(x x) e (xx) s |=|0 1 0
0.1182 —0.1182  0.1491 | (x" x5 (x"x) s (x"x) s | [0 0 1

This is can be rewritten into 3 systems of equations



1

6 ~6 omg2 ] (x"x) | 1
-6 10 —o.n82| (x"x) " |=|0
0.1182 —0.1182 0.1491 | (x"x )" | |0

Eliminating with the same A3 A21 we get

6 —6 0.1182] (x"x )" 1
0 4 0 |(xx)ul=| 1
0 0 01468 (x"x)"5 | |-0.0197

Backward substitution gets you:

(x"x)" | [ 04193
(x"x) ' |=| 025
(x| |-0.1342

This can repeated for the other “systems”. This is especially easy because we
use the same A matrix with the same pivots. Therefore for the following system:

6 6 ons2 7 (x"x)"]| To
6 10 —0.1182 | (x"x) " |=|1
0.1182 —0.1182  0.1491 | (x"x)"% | |0

we get:
6 -6 0.1182] (x"x)"| To
0 4 0 |(x"x)'n|=|1
0 0 0.1468](x"x) 0

Backward substitution gets you:

(x"x)"a| [025
» |=]0.25

The last system yields:



6 ~6 01182 (x"x)| [o
-6 10 —0.1182| (X" x)"|=|0
0.1182 —0.1182  0.1491 | (x"x)'5 | |1

After elimination we get:

-1

6 -6 0.1182] (x"x) | To
0 4 0 |(x"x)'n|=|0
0 0 0.1468)(x"x)'s| [1

Upon backward substitution:

(x"x)"s | [-0.1342
(x"x)'s|=| o
(x"x)'s| | 6812

We put all these together column by column to get:

04193 025 —0.1342
(x"x)'=| 025 025 0
~0.1342 0 6812

Now that we are done with the inverse, we look towards the other parameter. s
is calculated from:

5= J% = (8 = (o, M) (10)

a is specified for the appropriate confidence interval desired, here 0.05 (95%
confidence intervals). v can be calculated from:

v=N-dim(@)=6-3 (11)

The value of T, 4 is calculated from a simple piece of Matlab code or by looking
it up on a chart of T-values.

Putting all of these values into the equation (9), you get 95% confidence intervals
on the order of:

conf_intervals =

0.3244 0.3497



0.3208 0.3403
0.2964 0.3986

This can be accomplished with the following code:

% benwang_HW9 8A1.m
% Ben Wang

% HW#9 Problem #1

% due 12/9/05 9 am

% Linear Least Squares Fit

% ======= main routine benwang_HW9_8A1.m
function iflag_main = benwang_ HW9_8A1();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

Nu =[1.9676; .8986; .4261; 2.5098; 1.1521; .5520];
Re =[1; 1e-1; 1e-2; 1; 1e-1; 1e-2];
Pr=1[0.73; 0.73; 0.73; 1.5; 1.5; 1.5];

X = [ones(6,1) log10(Re) log10(Pr)];
y = log10(Nu);

A = X"*X;
b =X"y;

theta_LS = A\b
A_inv =inv(A);

% Calculate confidence intervals

alpha = 0.05;
nu = length(Nu) - length(theta_LS);

y_k = X*theta_LS;

forj=1:6

s_index(j) = (y_k() - y()"2;
end
sum(s_index);
s = sqrt(1/nu*sum(s_index));
t_val = tinv(1-alpha/2,nu);

fori=1:3
CI(i) = t_val*s*sgrt(A_inv(i,i));
conf_intervals(i,1) = theta_LS(i) - CI(i);
conf_intervals(i,2) = theta_LS(i) + CI(i);



end
conf_intervals

return
Problem 8A2

Here we are asked to do problem 8A1 with the help of the regress function in
Matlab. This is accomplished with some very simple code, yielding:

theta =

0.3370
0.3305
0.3475

theta Cl =

0.3244 0.3497
0.3208 0.3403
0.2964 0.3986

You will note that you get the same values as in 8A1, with the possible exception
of minor roundoff error.

% benwang_HW9_8A2.m
% Ben Wang

% HW#9 Problem #2

% due 12/9/05 9 am

% Linear Least Squares Fit

% ======= main routine benwang_HW9 8A2.m
function iflag_main = benwang_HW9_8A2();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

Nu =[1.9676; .8986; .4261; 2.5098; 1.1521; .5520];
Re =[1; 1e-1; 1e-2; 1; 1e-1; 1e-2];
Pr=10.73; 0.73; 0.73; 1.5; 1.5; 1.5];

X = [ones(6,1) log10(Re) log10(Pr)];
y = log10(Nu);

alpha = 0.05;

[theta,theta_CI] = regress(y,X,alpha)



%][theta,theta_Cl,residuals,res_Cl,stats]=regress(y,X,alpha)

return

Problem 8A3

This problem asks us to use the nlinfit function in Matlab to do regression using a
nonlinear model. We now use our model that has not been linearized:

Nu = a,(Re)" (Pr )™ (12)

Matlab provides several functions that help you do regression. The first is
nlinfit, which takes as input a design matrix of inputed predictor variables, the
response variable, a function name that contains the nonlinear model, and an
initial guess for the values of model parameters. It returns the least squares
estimate for the parameters, the residual errors in the fit, as well as the Jacobian,
which will be used to help calculate the confidence intervals.

The next function used will be n1parci which takes the output fromnlinfit
and uses them to calculate confidence intervals.

When we obtain parameter values and confidence intervals, with nl1infit and
nlparci, we obtain:

theta =
2.1857

0.3345
0.3400

theta_Cl =

21579 2.2134
0.3252 0.3438
0.3089 0.3710

If we remember now that, in comparing our nonlinear model to our linear model,
we have to take the log of our pre-factor ag. We then get values of:

theta =
0.3396

0.3345
0.3400



theta Cl =

0.3340 0.3451
0.3252 0.3438
0.3089 0.3710

We see that the values are slightly different, but the magnitudes of the
differences are relatively negligible.

% benwang_HW9_ 8A3.m
% Ben Wang

% HW#9 Problem #3

% due 12/9/05 9 am

% Nonlinear Least Squares Fit

% ======= main routine benwang_HW9 8A3.m
function iflag_main = benwang_HW9_8A3();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

% specify predictors and responses

Nu = [1.9676; .8986; .4261; 2.5098; 1.1521; .5520];
Re =[1; 1e-1; 1e-2; 1; 1e-1; 1e-2];

Pr=10.73; 0.73; 0.73; 1.5; 1.5; 1.5];

X_pred = [Re Pr];
y =Ny;

%initial guess for theta
theta_0=1[0.3; 1; 1];

% calculate least squares fit using nonlinear model

[theta, residuals, Jac] = nlinfit(X_pred,y,@benwang_nlin,theta_0);
sum(residuals.*2)

% calculate confidence intervals

theta_CI = nlparci(theta,residuals,Jac);

% [y_hat,y_hat HW] = nlpredci(@benwang_nlin,X_ pred,theta,residuals,Jac);

% output theta and 95% confidence intervals
theta
theta_ClI

% to compare against linear regression, we need to get alpha_0 back into
% its log form

theta(1) = log10(theta(1));
theta_CI(1,1) = log10(theta_CI(1,1));



theta_CI(1,2) = log10(theta_CI(1,2));
% output theta and 95% confidence intervals

theta
theta_ClI

return
% ==== subroutine that contains model information
function y_hat = benwang_nlin(theta,X_pred)

Re = X_pred(:,1);
Pr = X_pred(:,2);

alpha_0 = theta(1);
alpha_1 = theta(2);
alpha_2 = theta(3);

% nonlinear model
y_hat = alpha_0.*(Re).*alpha_1.*(Pr).*alpha_2;

return



