
Ch 7 Probability Theory and Stochastic Simulation: 
 
Frequentist statistics: 
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 - Bayes’ Theorem is general. 
 
Definitions: 
  

- variance:  ( ) ( )( )[ ] ( ) ( )[ ]222var WEWEWEWEW −=−=     
- (X, Y independent, var(X+Y) = var(X) + var(Y)) 
- standard deviation:  ( )Wvar=σ  
- covariance  ( ) ( )[ ] ( )[ ]{ }YEYXEXEYX −−=,cov , for two 

random variables X and Y 
- covariance matrix 

 
Important Probability Distributions Definitions: 
 

- Discrete random variable 
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- Continuous random variable 
 

o This is just the continuous version of the above, defined by 
integrals instead of limits, differentials instead of increments 
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- Cumulative Probability distribution 

o Basis of RAND in matlab 



o ( ) ( ) udxxpXF
x

lox
M == ∫ ''  

o u is defined as uniformly distributed 10 ≤≤ u  
 
Bernoulli trials 
 

o Concept that observed error is the net sum of many small random 
errors 

 
Random Walk Problem 

- key point: independence of coin tosses 
- Main results:    0=x  22 nlx =  

 
Binomial Distribution 
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- BINORND  Matlab to generate random number distributed 
using binomial distribution 

 
Gaussian (Normal) Distribution 
 

- Take binomial distribution, change into probability of observing net 
displacement after n steps of length l 
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- Evaluate in limit that n  ∞, take natural log, and use Stirling’s 
approximation 

- Algebra, and taylor expand around the ln terms 

- Taking the exponential and normalizing such that: ( )∫
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- Binomial Distribution of random walk reduces to Gaussian Distribution 
as n  ∞ 

- Central Limit Theorem: sequence of random variables, which are not 
distributed normally, the statistic 
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o random variable: jξ  with mean .jµ  and variance 2
jσ  

- is normally distributed in the limit that n  ∞, with variance = 1 
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- Non-zero Mean (basis of randn) 
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- Multivariate Gaussian Distribution (use of covariance matrix) 

o Covariance Matrix: ( )[ ] ( )[ ] ( )[ ]{ }jjiiij EEE ννννν −−=cov  
o Covariance Matrix is always symmetric and positive definite 
o For independent components: ( ) I2cov σν =  
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o if ν is a random vector and c is a constant vector: 
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Poisson Distribution 
 

- Poisson distribution can be used to determine probability of success if 
there are n trials, derived in the limit as n  ∞ 

- Total number of successes in trial is a random variable, which d 
- Another limiting case of binomial distribution 
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- p = probability of individual success 
- n = number of trials 
- ξ = result if success or failure, typically {1,0} with different probabilities 

 
Boltzmann/Maxwell Distributions 
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o Q is the normalization constant 
o Replacing E(q) for kinetic energy we arrive at Maxwell Distribution 

o ( )











−∝
kT
m

P
2

exp
2ν

ν  

 
Brownian Dynamics and Stochastic Differential Equations 



 
- velocity autocorrelation function 
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- Dirac Delta Function 
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- Langevin equation 
- Wiener process 
- Stochastic Differential equations 

o Explicit Euler SDE method 
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- Ito’s Stochastic Calculus 
o Example: Black-Scholes 
o Fokker-Planck 
o Einstein Relation 
o Brownian motion in multiple dimensions 

- MCMC 
o Stat Mech example 
o Metropolis recipe (pg497) 
o Example: Ising Lattice 
o Field theory 
o Monte Carlo Integration 
o Simulated annealings 
o Genetic Programming 

 
Bayesian Statistics and Parameter Estimation 
 
Goal of this material is to draw conclusions from data (“statistical inference”) and 
estimate parameters.  Basic definitions 
 

- Predictor variables: x = [x1 x2 x3… xM] 
- Response variable: y(R) = [y1 y2 y3 … yL] 
- θ: model parameters 

 
Main goal: match model prediction to that of the observed response by selecting 
θ.  
 
Single-Response Linear Regression 
 



- set of predictor variables, known a priori: x[k] = [x1
[k] x2

[k] x3
[k]… xM

[k]], for 
the kth experiment 

- measurement y[k] 
- assume a linear model: [ ] [ ] [ ] [ ] [ ]kk
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- the error in ε[k] is responsible for the difference between model and 
observed 

- define [ ]TM210  ...   ββββθ =  

- response is:     [ ] [ ] ( ) [ ]ktruekk xy εθ +⋅=  
- model prediction is:    [ ] [ ] ( )truekk xy θ⋅=ˆ  
- define design matrix X, which contains all information about every 

experiment (with different predictor variables) 
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- vector of predicted responses: 
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Linear Least Squares Regression 
 

- minimize sum of squared errors:  ( ) [ ] [ ]( )[ ]2
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- First derivative = 0, 2nd derivative is > 0, using these conditions with 
above equation you can derive a linear system 

- ( ) yXXX T
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=θ  (review point?) 

- XTX, contains information about experimental design to probe the 
parameter values 

- XTX is a real, symmetric matrix that is positive-semidefinite 
- Solving this is through standard linear solving, or QR decomposition or 

some other method 
- All this estimates parameters, but does not give us accuracy of our 

estimates 
 
Bayesian view of statistical inference 
 



- Statement of belief (especially in random number generators) 
 
Bayesian view of single-response regression 
 

- Begin with [ ] [ ] ( ) [ ]ktruekk xy εθ +⋅=  
- When we repeat this experiment multiple times, we get a vector ε 
- With Gauss-Markov Conditions: [ ]( ) 0=kE ε  [ ] [ ]( ) 2,cov σδεε kj

jk =  
- We also assume that our error is normally distributed  
- Probability of observing some response y 
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- We use Bayes’ Theorem to get probability of θ and σ 

- Posterior density: ( ) ( ) ( )
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- p(y) is a normalizing factor 
- we redefine p(y | θ, σ) to l(θ, σ| y) 
- in the Bayesian framework we want to maximize posterior density 
- Non-informative priors: p(θ,σ)=p(θ)p(σ) ( ) cp ~θ  ( ) 1−∝σθp  

 
Nonlinear least squares 
 

- the treatment via least squares still works, we just use numerical 
optimization, utilizing a cost function, to get there: (review point?) 
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- use of linearized design matrix 
- Hessians (first order approximation to get to XTX).  Remember to get 

convergence, approximate Hessian needs to be positive-definite. 
- Levenberg-Marquardt method: ill-conditioned systems 

 
Generating Confidence Intervals 
 

- t-statistic 

o ( )Ns
yt
/
θ−

≡   

o ( )
( )

2
1

2

1|

+
−









+∝

ν

ν
ν ttp   

o in the limit that ν approaches infinity, t-distribution reduces to 
Normal distribution 

- confidence intervals for model parameters 
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MCMC in Bayesian Analysis 
 


