Ch 7 Probability Theory and Stochastic Simulation:

Frequentist statistics:

- Probability of observing E:  p(E)= %
- Joint Probability: p(E,nE,)=p(E )pl(E, | E)
- Expectation: EW)=(W)~ NLZ%P w,
exp
\Bayes’ Theorem:‘ p(El )p(Ez | El)= p(Ez )p(E] | Ez)
- Bayes’ Theorem is general.
Definitions:
- variance: var(W)=E [ ]: —[ )2]
- (X, Y independent, var(X+Y) var(X ) + var(Y))
- standard deviation: o =Jvar()
- covariance cov(X,Y): E{{x -E(X)[r-E(Y)]}, for two
random variables X and Y
- covariance matrix
Important Probability Distributions Definitions:
- Discrete random variable
o For X,={X.X,...X,}
o N(X,)=number of observations of Xi
o T is the total number of observations %N(Xj): T
i=1
o Probability is definied by: P(X[):%
o Normalization is defined by gP(Xj):l

- Continuous random variable

o This is just the continuous version of the above, defined by
integrals instead of limits, differentials instead of increments

o Normalization condition: T p(x)dx =1

Xlo
o Expectation E(x)= <x> = xfi xp(x)dx

Xlo

- Cumulative Probability distribution
o Basis of RAND in matlab



o F(x,)= fp(x')dx':u

Yo

o uis defined as uniformly distributed 0 <u <1
Bernoulli trials

o Concept that observed error is the net sum of many small random
errors

Random Walk Problem
- key point: independence of coin tosses

- Main results: (x)=0 <x2> =nl*

Binomial Distribution

- probability distribution: P(n,nH)z(
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- BINORND Matlab to generate random number distributed
using binomial distribution

- binomial coefficient: ( " j:
ny

Gaussian (Normal) Distribution

- Take binomial distribution, change into probability of observing net
displacement after n steps of length |

o p(XI’l Z): n! [ljn
o {(n+x/l)}{(n—x/l)} 2
2 2
- Evaluate in limit that n> «, take natural log, and use Stirling’s

approximation
- Algebra, and taylor expand around the In terms

- Taking the exponential and normalizing such that: TP(x;n,l)dx =1
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- Plx;o)= 127[ exp{— 2);2} o’ =nl’

- Binomial Distribution of random walk reduces to Gaussian Distribution
as N> «©

- Central Limit Theorem: sequence of random variables, which are not
distributed normally, the statistic
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o random variable: &, with mean y; and variance sz
- is normally distributed in the limit that n=> oo, with variance = 1
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- Non-zero Mean (basis of randn)

0 N(ﬂ,02)=#eXp[—M}
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o P(S,)=

- Multivariate Gaussian Distribution (use of covariance matrix)
o Covariance Matrix: [cov(v)], = E{v, - E(v,)]v, - E(v, )|

o Covariance Matrix is always symmetric and positive definite
o For independent components: cov(v)= o’/

o cov(v)=cov(4x)= Alcov(x)]4"

o if vis a random vector and c is a constant vector:

o var(c-v)=varlcv)=c"[cov(v) = - [cov(v )L

o P(z;£a2)=mexp{—%@—ﬁy2”(&&)}

Poisson Distribution

- Poisson distribution can be used to determine probability of success if
there are n trials, derived in the limit as n=> «

- Total number of successes in trial is a random variable, which d

- Another limiting case of binomial distribution

&
- p(g; n,p)z (p”) o

&
- p = probability of individual success
- n = number of trials

- & =result if success or failure, typically {1,0} with different probabilities

Boltzmann/Maxwell Distributions
o P(q)z iexp{— M}
= 0 kT
o Qs the normalization constant
o Replacing E(q) for kinetic energy we arrive at Maxwell Distribution

o Ply) GXP[ M}

2kT

Brownian Dynamics and Stochastic Differential Equations




- velocity autocorrelation function
B 2R’

o G (t20)~C, (0)™ >

v\'

o (V(tW,(0)=2D5(t)

X

- Dirac Delta Function

1 t’
o or)= (lTILIé oy exp{— = }
o TrOpK=10)

- Langevin equation

- Wiener process

- Stochastic Differential equations
o Explicit Euler SDE method

o x(zw)_x(t):_i‘;_i’ j(m)qu]m(w,)

x(0)
- Ito’s Stochastic Calculus
o Example: Black-Scholes
o Fokker-Planck
o Einstein Relation
o Brownian motion in multiple dimensions
- MCMC
o Stat Mech example
Metropolis recipe (pg497)
Example: Ising Lattice
Field theory
Monte Carlo Integration
Simulated annealings
Genetic Programming
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Bayesian Statistics and Parameter Estimation

Goal of this material is to draw conclusions from data (“statistical inference”) and
estimate parameters. Basic definitions

- Predictor variables: x = [X1 X2 X3... Xu]
- Response variable: y® = [y1 vy, ys ... yi]
- 0: model parameters

Main goal: match model prediction to that of the observed response by selecting
0.

Single-Response Linear Regression



- set of predictor variables, known a priori: XX = [x{® x.M x™. .. xu™], for
the kth experiment
- measurement y

- assume a linear model: Y=g, + gxM+ g, N+ + B x,
- the error in ¢ is responsible for the difference between model and

4 I

observed
- define =[5, B B, ... fu]
- response is: Yl = I gl 4
- model prediction is: I = I glre)

- define design matrix X, which contains all information about every
experiment (with different predictor variables)
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Linear Least Squares Regression

- minimize sum of squared errors: S(0)= é[y["] —)7["](@)]2

- First derivative = 0, 2" derivative is > 0, using these conditions with
above equation you can derive a linear system

- (XTX)QLS =X"y> 0, =(XTX)_1XTy (review point?)

- X'X, contains information about experimental design to probe the
parameter values

- X'X is a real, symmetric matrix that is positive-semidefinite

- Solving this is through standard linear solving, or QR decomposition or
some other method

- All this estimates parameters, but does not give us accuracy of our
estimates

Bayesian view of statistical inference



Statement of belief (especially in random number generators)

Bayesian view of single-response regression

Begin with i) = x*1. g™ 1 gI¥]
When we repeat this experiment multiple times, we get a vector ¢
With Gauss-Markov Conditions: E(s!)=0  cov(s!, &)= 5,0

We also assume that our error is normally distributed
Probability of observing some response y

RN M )

We use Bayes’ Theorem to get probability of 6 and o

Posterior density: p(Q,g | y)z p(X|Q,G)p(Q,a)
B rlv)

p(y) is a normalizing factor

we redefine p(y | 6, o) to 1(6, o| y)

in the Bayesian framework we want to maximize posterior density
Non-informative priors: p(6,5)=p(8)p(c) p(6)~c p(@)co™

Nonlinear least squares

the treatment via least squares still works, we just use numerical
optimization, utilizing a cost function, to get there: (review point?)

Fou0)=250)=2 S~ 10

use of linearized design matrix

Hessians (first order approximation to get to X'X). Remember to get
convergence, approximate Hessian needs to be positive-definite.
Levenberg-Marquardt method: ill-conditioned systems

Generating Confidence Intervals

t-statistic B
y—0
o t=
s/\/ﬁ
5 _(v+1)
2
o p(t|v)oc{l+t—}
1%

o in the limit that v approaches infinity, t-distribution reduces to
Normal distribution
confidence intervals for model parameters



]4 g/z
Ou j

o qzaminmﬁhﬂX

o v=N-dim(9)

MCMC in Bayesian Analysis



