
Fall 2005 10.34 Exam I. Friday Oct. 7, 2005.


Read through the entire exam before beginning work, and budget your time. 

Perform all calculations by hand, showing all steps.  You may use a calcula­
tion for simple multiplication and addition of numbers, however. 

2 1  1– 
Problem 1. Consider the matrix A = 1 3 1  

1– 1 2  

1 
(a) Compute the product Av  for the vector v = .2 

3 

Answer 

N 

Using the rule (Av)j = ∑ ajkvk , we have 
k 1= 

Av = 
2 1  1– 1 2( ) 1( )  1( )( )+[ 2 1–( ) 3( )+ ] 1 

1 3  1  2 = 1( ) 1( )  3( ) 2+[ ( )  1( ) 3( )+ ] = 10 

1– 1  2  3 1–( ) 1( )  1( ) 2+[ ( )  2( ) 3( )+ ] 7 

(b) Compute the LU decomposition A = LU where L is a lower-triangular matrix and U is 
an upper-triangular matrix. 

Answer 

To generate A = LU we perform Gaussian elimination without partial pivoting. First, 
we zero the (2,1) component, calculating 

λ21 

a21 1 
=	 ------- = --- = 0.5 

a11 2 

and then by performing the row operation 2 ← 2 – λ21 × 1 , we have the new matrix 

2 1 1– 2 1  1– 
,

A
(2 1)

= 2 1 1– =[1 – (0.5)( )] [ 3 – (0.5)( )] [ 1 – (0.5)( )] 0 2.5  1.5  

1– 1 2 1– 1 2 
Fall 2005 10.34 Exam I. Friday Oct. 7, 2005. October 6, 2005 1 



------------

------------ ------- ----------

(2 1),
a31 1Next, we zero the (3,1) component by calculating λ31 = --

(2 1) = –--- = –0.5 and per­, 2a11 

,forming the row operation on A
(2 1) 

3 ← 3 – λ31 × 1 , to yield 

2 1 1– 2 1  1– 
A

(3 1), 
= =0 2.5 1.5 0 2.5  1.5  

2 1 1–[ 1– – (–0.5 )( )] [ 1 – (–0.5)( )] [ 2 – (–0.5)( )] 0 1.5  1.5  

(3 1),
a32 1.5 3 2 3⁄Next, we zero the (3,2) component by calculating λ32 = --

(3 1) =
2.5

=
5 2

=
5
--- = 0.6 , ⁄a22 

,and performing the row operation on A
(3 1) 

3 ← 3 – λ32 × 2 , to yield the upper triangu­
lar matrix 

2 1 1– 2 1  1– 
U = 0 2.5 1.5 = 0 2.5  1.5  

0 1.5  0.6( ) 2.5( )–[ ] 1.5 0.6( ) 1.5( )–[ ] 0 0  0.6  

To generate the lower triangular matrix L , we place ones along the principal diag­
onal and store the values of the λ ‘s below the diagonal,mn 

1 0 0 1 0 0 
1 0L = = 0.5 1 0λ21 

0.5– 0.6 1λ31 λ32 1 

(c) Compute the determinant of A . 

Answer 

Here, we save some time by noting that A = LU = L U , and remembering that 
the determinant of a triangular matrix is the product of its diagonal elements. 
Therefore, L = 1 and 

A = U 2= ( )(2.5)(0.6) = 3= U11 U22 U33 

2 
(d) Compute the solution x to the linear system Ax = b for b = .0 

1– 

Answer 
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--------------------------------

We can compute the solution quickly by using the LU factorization. Substituting for 
A , 

Lc = b 
LUx = b ⇒ 

Ux = c 

First, we compute c by solving Lc = b through forward substitution, 

1 0 0 c1 2 
c1 2= 

0.5 1 0 c2 = 0 ⇒ 0.5( )c1 1( )c2+ 0= c2 0.5( ) c1( )– 1–= = 

–0.5 0.6 1 c3 
1– –0.5( )c1 0.6( )c2 c3+ + 1–= c3 1– 0.6c2 – 0.5c1+ 0.6= = 

Then, we solve Ux

2 1  1– x1 

0 2.5  1.5  x2 

0 0  0.6  x3 

= c through backward substitution, 

2 
2( )x1 1( )x2 1–( )x3+ + 2= x1 

2 1 1+ +  
2 

- - 2= = 

= 1– 

0.6 

⇒ 2.5( )x2 1.5( )x3+ 1–= x2 
1– 1.5( ) 1( )– 

2.5 
-- –1= = 

0.6( )x3 0.6= x3 1= 

2 
Therefore, the solution is x = 1– . 

1 

Problem 2. Consider the system of three nonlinear algebraic equations, 

2 1 2 
xf1( ) = x1 + x2 – ---x3 = 0

2 

3 1 3 
xf2( ) = x1 + x2 + ---x3 = 0

3 

1 2 2 
xf3( ) = – ---x1 + x2 + x3 = 0

2 

(a) Compute the Jacobian matrix, where the elements are functions of x . 

Answer 

∂fmThe Jacobian matrix J x( ) has elements J = . Thus, for this system we havemn ∂xn x 
Fall 2005 10.34 Exam I. Friday Oct. 7, 2005. October 6, 2005 3 



2x1 1 –x3 

2 2J x( ) = 1 3x2 x3 

–x1 1 2x3 

1 
0 1(b) Using x

[ ]
= , compute the new estimate x

[ ] generated by Newton’s method. Hint:1 

1 

0Does J(x
[ ] ) look familiar? 

Answer 

00 0 ( 0 [ ]The linear system that we wish to solve is J(x
[ ] )p

[ ]
= –f x

[ ] ) . For this particular x , 
the Jacobian is equal to the matrix A from problem 1, 

2 1  1– 
0

J(x
[ ] ) = 1 3 1  

1– 1 2  

This means that we can use the LU decomposition from problem 1 to avoid per­
forming Gaussian elimination again. The function vector is 

2 1 2 
x1 + x2 – ---x32 

0 3 1 3f(x
[ ] ) = x1 + x2 + ---x33 

1 2 2 
– ---x1 + x2 + x32 

= 

1
1 1 – ---+ 

2 

1
+ + -­-1 1  

3 

1 
– --- 1+ +1

2 

1.5 
= 2.333 

1.5 

The linear system that we wish to solve is of the form Ax = b with 

–1.5 
( 0

b = –f x
[ ] ) = –2.333 

–1.5 

Repeating the forward and backward substitution process of (1.d), we have a full 
Newton-update vector and new solution estimate, 

p 
0[ ]

= 
–2.167 

0.667 x 
1[ ]

= x 
0[ ]  

p 
0[ ]

+ = 
–1.167 

1.667 

–2.167 –1.167 

(c) Would this guess be accepted in a robust reduced-step Newton algorithm? 

Answer 
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0The square of the 2-norm (length) of the function vector at x
[ ]  is 

f x
[ ] )

2
( 0 ( 0 ( 0

= f x
[ ] ) ⋅ f x

[ ] ) = 9.9429 

2.379 
1For the new estimate, f(x

[ ] ) =  and thus 2.9356 

2.3479 

2 
f x

[ ] )( 1 ( 1 ( 1
= f x

[ ] ) ⋅ f x
[ ] ) = 19.6436 

2 2 
f x

[ ] ) f x
[ ] )As ( 1 > ( 0 , we would not accept this new estimate, but would rather itera­

tively halve the step length until we find that the 2-norm is reduced at the new esti­
mate. 

Problem 3. Consider again the matrix A of problem 1. 

(a) What properties of the eigenvalues and eigenvectors of A  can you infer simply by 
inspection of A , i.e. with no additional computations? 

Answer 

Since A is real-symmetric, we know that its eigenvalues are all real and its eigen­
vectors are mutually orthogonal. 

(b) Compute an upper bound on the largest possible magnitude (modulus) of an eigen­
value of A . That is, find a value λmax  such that for all eigenvalues  of A , we are guaran-λ j 

teed to have ≤ λ .λ j max 

Answer 

Here, we use Gershorgin’s theorem and the fact that we know all eigenvalues of A 

to be real. Gershorgin’s theorem states that for each λ , such that Aw = λw , one of 
the following inequalities must apply, 

λ 2 –  ≤ 1  –  1  + λ 4= 2 ⇒ 0 ≤ ≤  
λ 3 –  ≤ 1  1  + λ 5= 2 ⇒ 1 ≤ ≤  

λ 2 –  ≤ 1  –  1  + λ 4= 2 ⇒ 0 ≤ ≤  

λ 5 , so that all eigenvalues must be non-negative and must be Thus, we have 0 ≤ ≤  
less than or equal to 5.  5 is thus an upper bound on the magnitude of the eigen­
values of A . In fact, the eigenvalues are 0.2679, 3.0000, 3.7321. 
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