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TR_1D_model1_SS\TR_1D_model1_SS.m 

% TR_1D_model1_SS\TR_1D_model1_SS.m

%

% function imain_flag = TR_1D_model1_SS();

%

% This program calculates the steady state concentration 

% and temperature profiles in a 1-D tubular reactor for 

% an arbitrary number of species and an arbitrary reaction 

% network. The reaction network is specified by the 

% stoichiometric coefficients and the exponential powers to 

% which the concentrations of each species are raised in 

% the rate laws. The effective diffusivities for each 

% species and the density and heat capacity of the medium 

% are assumed to be constant. The heats of reaction are 

% likewise assumed constant, and the temperature dependence 

% of each rate constant is specified by the value of the 

% rate constant at a reference temperature and a constant 

% activation energy. The heat transfer coefficient for the 

% cooling jacket is assumed constant. Dankwert's boundary 

% conditions are applied at the inlet and outlet. A constant 

% superficial velocity, obtained from knowledge of the reactor 

% dimensions and volumetric flow rate, is used to quantify the 

% convective contribution to the fluxes of each species' 

% concentration and the enthalpy.

%

%

% PROGRAM INPUT/OUTPUT DATA

% =========================

%

% problem_dimension_data (struct ProbDim)

% --------------------------------------

% .num_species IN INT

% the number of species

% .num_rxn IN INT

% the number of reactions

%

% reactor_data (struct Reactor)

% -----------------------------

% .len IN REAL

% the length of the tubular reactor

% .dia IN REAL

% the diameter of the tubular reactor

% .Qflow IN REAL




%  the volumetric flow rate through the

% reactor. Along with the dimensions

% of the reactor, it defines the superficial 

% velocity used in the convective terms of 

% the species and enthalpy balances.

% .Temp_cool IN REAL

% the temperature of the reactor coolant 

% jacket

% .U_HT  IN REAL

% the overall heat transfer coefficient of 

% the reactor

% .conc_in  IN REAL(ProbDim.num_species)

% the concentrations of each species in

% the reactor inlet

% .Temp_in  IN REAL

%  the temperature of the reactor inlet

% .volume  PROG REAL

% the volume of the reactor

% .cross_area PROG REAL

% the cross sectional area of the reactor

% .surf_area PROG REAL

% the surface area of the reactor available

% for heat transfer to the cooling jacket

% .velocity  PROG REAL

% the superficial velocity in the reactor

% that is included in the convective 

% flux terms

%

% physical_data (struct Physical)

% -------------------------------

% .diffusivity IN REAL(num_species)

% the constant diffusivities of each species

% .density IN REAL

% the constant density of the medium

% .Cp  IN REAL

% the constant heat capacity of the medium

% .thermal_conduct IN REAL

% the constant thermal conductivity of 

% the medium

% .thermal_diff PROG REAL

% the constant thermal diffusivity of 

% the medium

%

% rxn_data (struct Rxn)

% ---------------------

% .stoich_coeff IN




% REAL(ProbDim.num_rxn,ProbDim.num_species)

% the stoichiometric coefficients 

% possibly fractional) of each

% species in each reaction.

% .ratelaw_exp IN

% REAL(ProbDim.num_rxn,ProbDim.num_species)

% the exponential power (possibly fractional) 

% to which the concentration of each species 

% is raised each reaction's rate law. 

% .is_rxn_elementary IN INT(ProbDim.num_rxn)

%  if a reaction is elementary, then the 

% rate law exponents are zero for the 

% product species and the negative of the 

% stoichiometric coefficient for the 

% reactant species. In this case, we need 

% not enter the corresponding components of 

% ratelaw_exp since these are determined by 

% the corresponding values in stoich_coeff.

% We specify that reaction number irxn is 

% elementary by setting

% is_rxn_elementary(irxn) = 1. 

% Otherwise (default = 0), we assume that 

% the reaction is not elementary and require

% the user to input the values of 

% ratelaw_exp for reaction # irxn.

% .k_ref IN REAL(ProbDim.num_rxn)

% the rate constants of each reaction at a

% specified reference temperature

% .T_ref  IN REAL(ProbDim.num_rxn)

% This is the value of the reference 

% temperature used to specify the 

% temperature dependence of each

%  rate constant.

% .E_activ  IN REAL(ProbDim.num_rxn)

% the constant activation energies of 

% each reaction divided by the value

% of the ideal gas constant

% .delta_H  IN REAL(num_rxn)

% the constant heats of reaction

%

%

% PROGRAM IMPLEMENTATION NOTES

% ============================

%

% Section 1. Method of discretizing PDE's :

% -----------------------------------------




%

% To discretize the partial differential equations 

% that describe the balances on the species 

% concentrations and the enthalpy, use the method of 

% finite differences. To avoid spurious oscillations 

% when convection dominates and the local Peclet 

% number is greater than two, use upwind differencing. 

% Implement the finite difference procedure so that 

% the grid point spacing may be non-uniform.

%

% grid_data (struct Grid)

% -----------------------

% .num_pts  PIN INT

% the number of grid points in 

% the axial direction

% .z  POUT REAL(Grid.num_pts)

% the values of the z-coordinate 

% at the grid points

%

% state_data (struct State)

% ------------------------

% .conc POUT

% REAL(Grid.num_pts,ProbDim.num_species)

% the values of the species' 

% concentrations at grid points

% .Temp POUT REAL(Grid.num_pts)

% the values of the temperature 

% at each grid point

%

%

% Section 2. Method of solving for the steady state profiles :

% ------------------------------------------------------------

%

% To solve for the steady-state profiles, we will use a robust

% two-step procedure. We will initially assume that the inlet 

% conditions hold uniformly throughout the reactor. As this is 

% likely to be far from the true solution, we will first perform 

% a number of implicit Euler time integration steps to get 

% within the vicinity of the stable steady state solution. The 

% time integration will proceed until a maximum number of time 

% steps have been performed or until the norm of the time 

% derivative vector falls below a specified value. If the time 

% derivative has become sufficiently small, we will switch to 

% Newton's method with a weak-line search to aid global 

% convergence.

%




% If one wishes to use only Newton's method to solve for the 

% steady state profile (for example to find an unstable steady 

% state), then Solver.max_iter_time is set to 0. Otherwise, 

% if the maximum number of time integration steps has been 

% performed and the time derivative is still too large, the 

% program exits without performing any Newton's method iterations. 

%

% A restart utility will be added so that if convergence is not 

% achieved, executing the program again will start from the 

% previously saved results. Upon a restart, new time step and 

% convergence tolerances are input.

%

% At each time or Newton's method iteration, the values of the 

% concentration and temperatures at each grid point will be 

% constrained to be non-negative.

%

%

% iflag_restart PIN INT

% This integer flag indicates whether the 

% simulation is a restart of a previous simulation, 

% in which only new convergence parameters need be 

% input, or is an initial simulation in which all 

% system parameters must be input. If iflag_restart 

% is non-zero, then it is a restart, if 0 then it is

% an initial simulation.

%

% imain_flag POUT INT

% This integer flag signifies whether the solution 

% method has converged. A positive value signifies 

% that convergence to the steady state value has 

% been attained. A negative value indicates some error.

%

% solver_data (struct Solver)

% ---------------------------

% .max_iter_time PIN INT

% the maximum number of implicit Euler time steps.

% If =0, then no time simulation is performed and the

% solver goes immediately to Newton's method

% .dt  PIN REAL

% the time step to be used in the implicit 

% Euler simulation

% .atol_time PIN REAL

% the norm of the function (time derivative) vector 

% at which the time integration procedure is deemed 

% to have been sufficiently converged

% .max_iter_Newton PIN INT




% the maximum number of Newton's method iterations

% .atol_Newton PIN REAL

% the norm of the function (time derivative) vector

% at which convergence to the steady state solution is

% deemed to have been achieved

% .iflag_Adepend PROGINT

% if this integer flag is non-zero, then the A matrix

% is assumed to be state-dependent and so must be

% recalculated at every iteration

% .iflag_nonneg PROG INT

% if this integer flag is non-zero, then the elements

% of the state vector are enforced to be non-negative

% at every iteration

% .iflag_verbose PROG INT

% if this integer flag is non-zero, then the solver

% routine is instructed to print to the screen the 

% progress of the solution process; otherwise, it 

% runs silent

%

% Interaction with Section 1. Method of discretizing PDE's :

%

% Each time that the program runs, the solver will overwrite the 

% value of the concentration and temperature profiles. It could 

% be that too large of a time step is used or that Newton's method 

% has a problem converging, so that the quality of the solution 

% is poorer than it was before the solver was called. The next 

% restart should therefore start from the old, better solution 

% and not necessarily the most recent. To guard against this, 

% if the output solution estimate appears farther from steady 

% state than the input estimate, a warning message will be 

% returned and two separate output files will be created. The 

% results of the solver will be written to the standard output 

% file, but a second file will be written that retains the initial 

% results. If these previous results are to be used in a 

% subsequent restart, the user copies this file to the name of 

% the standard output file before running again. User discretion 

% is required in this case, because the dynamics of some systems 

% have an induction period. In this case, the magnitude of the 

% time derivative vector will naturally increase in the course 

% of approaching the stable steady state.

%
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%

% Version as of 7/25/2001


function imain_flag = TR_1D_model1_SS(); 

func_name = 'TR_1D_model1_SS'; 

imain_flag = 0; 

% This integer flag controls what to do if an assertion fails. 
% See assertion routines for meaning. 
i_error = 2; 

% PDL> Ask if it is a restart, read answer to iflag_restart 

disp('Starting TR_1D_model1_SS');

iflag_restart = input('Is this a restart? (0=no, 1=yes) : ');

check_real=1; check_sign=2; check_int=1;

assert_scalar(i_error,iflag_restart,'iflag_restart',...


func_name,check_real,check_sign,check_int); 

% PDL> IF it is not a restart, THEN 

if(iflag_restart == 0) 

% PROCEDURE: read_program_input 
% PDL> Read in the program input data (intent IN) 
% PDL> Among PIN data, read grid_data:num_pts 
% ENDPROCEDURE 

disp('Reading program input ...'); 

[ProbDim,Reactor,Physical,Rxn,Grid,iflag_func] = ... 
read_program_input; 

if(iflag_func <= 0) 
imain_flag = -1; 
if(i_error > 1) 

save dump_error.mat; 
end 
error([func_name, ': ', ... 

'Error (', int2str(iflag_func), ') ', ... 



 'returned from read_problem_input']); 
end 

% PROCEDURE: set_grid_1D

% PDL> Specify the locations of the grid points in z_grid.

% For the moment, simply use a uniform grid, although 

% write the rest of the program to be compatible with 

% the use of a non-uniform grid

% ENDPROCEDURE


disp('Setting grid ...');

[Grid.z,iflag_func] = set_grid_1D(Grid.num_pts,Reactor.len);

if(iflag_func <= 0)


imain_flag = -2; 
if(i_error > 1) 

save dump_error.mat; 
end 
error([func_name, ': ', ... 

'Error (', int2str(iflag_func), ') ', ... 
'returned from set_grid_1D']); 

end 

% PDL> Initialize the concentration and temperature profiles 
% by setting them to be uniformly equal to the inlet 
% conditions. 

State.conc = zeros(Grid.num_pts,ProbDim.num_species); 
for ispecies = 1:ProbDim.num_species 

State.conc(:,ispecies) = Reactor.conc_in(ispecies); 
end 

State.Temp = linspace(... 
Reactor.Temp_in,Reactor.Temp_in,Grid.num_pts)'; 

% PDL> ELSE IF NOT a restart THEN 

else 

% PDL> Read in the file TR_1D_model1_SS.mat 

disp('Reading file TR_1D_model1_SS.mat'); 
load TR_1D_model1_SS.mat; 



% PDL> ENDIF 

end 

% PROCEDURE: read_solver_input

% PDL> Input the values of the PIN variables that control 

% the solver operation

% ENDPROCEDURE


[Solver,iflag_func] = read_solver_input; 
if(iflag_func <= 0) 

imain_flag = -3; 
if(i_error > 1) 

save dump_error.mat; 
end 
error([func_name, ': ', ... 

'Error (', int2str(iflag_func), ') ', ... 
'returned from read_solver_input']); 

end 

%PDL> Save the initial concentration and temperature 
% profiles in back-up variables for possible later 
% use in a restart in case the solver behaves badly. 

State_init = State; 

% PROCEDURE: TR_1D_model1_SS_solver 
% PDL> Call the solver to update the estimate 
% of the solution vector 
% ENDPROCEDURE 

[State,iflag_converge,f,f_init] = ... 
TR_1D_model1_SS_solver(State_init, ... 
Solver,ProbDim,Reactor,Physical,Rxn,Grid); 

% PDL> Write the results of the simulation to 
% the file TR_1D_model1_SS.mat 

save TR_1D_model1_SS.mat; 



% PDL> CASE : Select course of action based on 
% value of iflag_converge returned from 
% steady state solver 

switch iflag_converge; 

% PDL> IF iflag_converge IS 0, 
% signifying no convergence 

case {0} 

% PDL> Set integer flag of main program, 
% imain_flag to 0 

imain_flag = 0; 

% PDL> If the norm of the function (time derivative) 

% vector is greater after the solver operation 

% than it was before, set the return value of 

% imain_flag to indicate this. Then, write the 

% old profiles to the file 

% TR_1D_model1_SS_backup.mat and set 

% imain_flag as indicator


norm_f_init = max(abs(f_init)); 
norm_f = max(abs(f)); 

if(norm_f > norm_f_init) 
disp(' '); 
disp(['Final estimate had larger error ',... 

'than initial estimate']); 
imain_flag = -4; 
State = State_init; 
clear State_init; 
save TR_1D_model1_SS_backup.mat; 

end 

% PDL> IF iflag_converge IS 1, signfying convergence 
PDL> Print convergence message and set% 

% imain_flag to 1 



case {1} 

imain_flag = 1;

disp(' ');

disp('Solver converged');


% PDL> IF iflag_converge IS negative, signfying error 
% PDL> Print error message and set imain_flag to -1 

otherwise 

imain_flag = -5; 
disp(['Error encountered with iflag_converge = ', ... 

int2str(iflag_converge)]); 

% PDL> ENDCASE 

end 

% PDL> Make plots of the solver output results 

plot_results(ProbDim.num_species,Grid,State); 

return; 


