Produced using MATLAB® software.
TR_1D _modell SS\TR_1D _modlell SS solver Pagelof 5

TR_1D modell SS\TR 1D modlell SS solver.m

% TR_1D_modell_SS\TR_1D modell_SS_solver.m
%

% function [State,iflag_converge,f,f_init] = ...

% TR_1D_modell_SS_solver(State_init,Solver,ProbDim, ...
% Reactor,Physical,Rxn,Grid);

%

% This procedure updates the solution estimate

% of the steady state concentration and

% temperature profiles in a 1D tubular

% reactor with an arbitrary reaction network.

% If desired, an initial stage of implicit Euler

% time integration is performed for either a

% maximum number of steps or until the norm of

% the function (time derivative) vector drops

% below a certain magnitude. At this point, a

% Newton's method with a weak line search is

% performed until convergence to steady state

% is achieved. The new estimates of the steady

% state concentration and temperature profiles

% are then returned along with an integer flag

% signaling 1 if convergence has been achieved.

%

% The procedure first provides routines to convert

% the problem to the generic form :

%

% epsilon(k) * df_dt(k) = b(k) -

% \sum_{j} {A(k,))*x_state(j)}

%

% Here x_state is a master 1-D array of the

% unknown state variables and packing and unpacking
% routines will be provided to convert between

% state_data and x_state. For equation (row) K,

% epsilon(k) is 1 if the equation is an ODE and is

% 0 if it is an algebraic equation arising from the

% boundary conditions. b(k) is a non-linear source

% term and A is a matrix that discretizes the

% diffusive and convective transport terms. Names

% of functions will be set that calculate A,

% calculate the source term vector b, and

% the Jacobian of b given the input state data in

% the master array form x. Three functions are used -
% the first calculates the A elements for the interior

% points, the second calculates the b and bJac elements
% for the interior points, and the third calculates

% the A, b, and bJac elements for the boundary conditions
% that are implemented as algebraic equations.

%

7/16/2002

TR_1D _modell SS\TR_1D _modlell SS solver

% The names of these functions are then passed to

% a generic solver routine that does the actual

% calculation and that may be reused for other problems.
% A flag is passed to this solver routine that enforces

% that all state variables be non-negative at

% every time and Newton's method iteration.

%

% INPUT :

0 =======

% State_init copy of State data structure containing

% the initial values of the concentration

% and temperature profiles

% Solver see TR_1D modell SS.m for description
% ProbDim see TR_1D_modell_SS.m for description
% Reactor see TR_1D modell SS.m for description
% Physical see TR_1D modell SS.m for description
% Rxn see TR_1D_modell_SS.m for description
% Grid see TR_1D modell SS.m for description
%

% OUTPUT :

0 ========

% State data structure (see TR_1D_modell_ss.m for format)
% that contains the output estimate of the steady
% state solution obtained by the solver

% iflag_converge INT

% This integer flag is set equal to 1 if the

% solution procedure has converged. A value
% of 0 means that the method did not converge.
% A negative value indicates an error.

% f REAL(num_DOF)

% This is the time derivative vector (for boundary
% points it is a measure of error in the boundary
% condition) whose magnitude tells how far the

% output estimate is from the steady state.

% f _init REAL(num_DOF)

% The time derivative vector for State_init

%

% Kenneth Beers

% Massachusetts Institute of Technology
% Department of Chemical Engineering
% 7/2/2001

%

% Version as of 7/25/2001

function [State,iflag_converge,f,f_init] = ...
TR_1D _modell_SS_solver(State_init,Solver,ProbDim, ...
Reactor,Physical,Rxn,Grid);

Page 2 of 5

7/16/2002

TR_1D _modell SS\TR_1D _modlell SS solver

%PDL> Initialize iflag_converge to O to
% designate lack of convergence

iflag_converge = 0;

func_name ='TR_1D_modell _SS_solver’;

% This integer flag controls what action to take
% in case of an error. A value > 1 results in

% a dump_error.mat file being written before the
% MATLAB error() function is invoked.

i_error = 2;

% Since this routine is so closely coupled with the
% main program, no checks on input are added.

if(Solver.iflag_verbose ~= 0)

disp("');

disp("');

disp('Starting TR_1D_modell_SS_solver()...");
end

%PDL> Set names of routines to be used for calculating
% the A matrix, b vector, and the Jacobian of b in

% the standard DAE form. For the interior points,

% use a function to calculate A and another to

% calculate b and bJac. Use a separate function

% to implement the boundary conditions.

func_calc_A_int ='TR_1D_modell_func_calc_A_int’;
func_calc_b_int ='TR_1D_modell_func_calc_b_int’
func_implement_BC ="'implement_Dankwert_BC';

%PROCEDURE: stack_state

%PDL> Stack the state variables into the master
% 1-D array x_state

%ENDPROCEDURE

[x_init,iflag_func] = stack_state(State_init, ...
ProbDim.num_species,Grid.num_pts);
if(iflag_func <= 0)
if(i_error > 1)
save dump_error.mat;
end
message = [func_name, ": ', ...
‘Error (',int2str(iflag_func),’)’, ...
'returned from stack_state'];
error(message);

Page 3 of 5

7/16/2002

TR_1D _modell SS\TR_1D _modlell SS solver

end

%PROCEDURE: calc_epsilon

%PDL> Set the epsilon vector telling the solver
% which are the ordinary differential equations
% and which are the algebraic equations
%ENDPROCEDURE

% set an integer mask that has 0's at the

% boundary points and 1's at the interior points.
imask_int = linspace(1,1,Grid.num_pts)’;
imask_int(1) = 0;
imask_int(Grid.num_pts)=0;

% set total number of fields
num_fields = ProbDim.num_species + 1,

% calculate the epsilon vector for the DAE system
% that has 1's for every ODE and a O for every
% algebraic equation
[epsilon,iflag_func] = calc_epsilon(...
Grid.num_pts,imask_int,num_fields);
if(iflag_func <= 0)
iflag_converge = -1;
if(i_error > 1)
save dump_error.mat;
end
message = [func_name, " ', ...
‘error (',int2str(iflag_func),’)’, ...
"returned from calc_epsilon'];
error(message);
end

%PDL> Provide a master structure to stack the
% data to be passed to the general solver

% routine and from there to the functions

% that calculate A and b, bJac.

Param.ProbDim = ProbDim;
Param.Reactor = Reactor;
Param.Physical = Physical,
Param.Rxn = Rxn;
Param.Grid = Grid;

%PROCEDURE: DAE_SS solver_1
%PDL> Pass x_state, the system parameters
% and the solver_data parameters to a generic

Page 4 of 5

7/16/2002

TR_1D _modell SS\TR_1D _modlell SS solver

% solver routine to update the steady state
% solution estimate. This routine returns
% the new solution estimate in x_state, the
% appropriate value to iflag_converge, and
% the final value of the function (b-Ax)

% vector.

%ENDPROCEDURE

[x_state,iflag_func,f,f_init] = ...
DAE_SS_solver_1(x_init,...

Solver,func_calc_A_int,func_calc_b_int, ...

func_implement_BC,epsilon,Param);
iflag_converge = iflag_func;

if(iflag_converge < 0)
message = [func_name, ": ', ...
‘Error (',int2str(iflag_func),’)’, ...
'returned from DAE_SS_solver_1'];
if(i_error > 1)
save dump_error.mat;
end
error(message);
end

%PROCEDURE: unstack_state

%PDL> Unstack the new solution estimate
% to the state_data variable names
%ENDPROCEDURE

[State,iflag_func] = unstack_state(x_state, ...

ProbDim.num_species,Grid.num_pts);
if(iflag_func <= 0)
message = [func_name, ": ', ...
‘Error (',int2str(iflag_func),’)’, ...
'returned from unstack_state'];
if(i_error > 1)
save dump_error.mat;
end
error(message);
end

%PDL> Return the new state data variable
% values, the new value of iflag_converge,
% and the function vector for

% the new estimate

return;

Page 5 of 5

7/16/2002

