1.2.2 Gauss-Jordan Elimination

In the method of Gaussian elimination, starting from a system A x = b of the general
form
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is converted to an equivalent system A’ x = b’ after %N3 FLOP’s that is of upper

triangular form
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At this point, it is possible, through backward substitution, to solve for the unknowns in
2

the order xn, XN-1, XN-2, ... Il 7 steps.

In the method of Gauss-Jordan elimination, one continues the work of elimination,
placing zeros above the diagonal.

To “zero” the element at (N-1, N), we write the last two equations of (1.2.2-2)
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And replace the N-1* row with the equation obtained after performing the row operation
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After this row operation the set of equations becomes
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We can continue this process until the set of equations is in diagonal form
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Dividing each equation by the value of its single coefficient yields
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The matrix on the left that has a one everywhere along the principal diagonal and zeros
everywhere else is called the identity matrix, and has the property that for any vector v,

Iv=v (1.2.2-11)
The form (1.2.2-10) therefore immediately gives the solution to the problem.
In practice, we use Gaussian Elimination, stopping at (1.2.2-2) to begin backward
substitution rather than continue the elimination process because backward substitution is

so fast, N* << 2N?/3 for all but small problems.

We therefore do not consider the method of Gauss-Jordan Elimination further.



