
1.2.3 Pivoting Techniques in Gaussian Elimination

Let us consider again the 1st row operation in Gaussian Elimination, where we start with
the original augmented matrix of the system

(A, b) = (1.2.3-1)























NNNN3N2N1

33N333231

22N232221

11N13 1211

b a ... a a a
: : : : :

b a ... a a a
b a ... a a a
b a ... a a a

and perform the following row operation,

(A(2,1), b(2,1)) =






















−

NNNN3N2N1

33N333231

12121N212N132123122122112121

11N13 1211

b a ... a a a
: : : : :

b a ... a a a
)bλ(b)aλ-(a ...)aλ-(a)aλ-(a)aλ-(a

b a ... a a a

(1.2.3-2)

To place a zero at the (2,1) position as desired, we want to define λ as 21

11

21
21 a

aλ = (1.2.3-3)

but what happens if a11 = 0? => ! toup blows λ 21 ∞±

The technique of partial pivoting is designed to avoid such problems and make Gaussian
Elimination a more robust method.

Let us first examine the elements of the 1st column of A,

A(: , 1) = (1.2.3-4)



























N1

31

21

11

a
:
:
a
a
a

Let us search all the elements of this column to find the row #j that contains the value
with the largest magnitude, i.e.

N ..., 2, 1,k allfor aa k1ji =≥ (1.2.3-5)

}a{maxa

or

k1N][1,kj1 ∈= (1.2.3-6)

Since the order of the equations does not matter, we are perfectly free to exchange rows
1 and j to form the system

()b,A = row # j row # 1























NNNN3N2N1

1N131211

22N232221

jjNj3 j2j1

b a ... a a a
: : : : :

1b a ... a a a
b a ... a a a

b a ... a a a

(1.2.3-7)

Now, as long as any of the elements of the 1st column of A are non-zero, aj1 is non-zero
and we are safe to begin eliminating the values below the diagonal in the 1st column.

If all the elements of the 1st column are zero, we immediately see that no equation in the
system makes reference to the unknown x, and so there is no unique solution. We
therefore stop the elimination process at this point and “give up”.

The row-swapping procedure outlined in (1.2.3-1), (1.2.3-6), (1.2.3-7) is known as a
partial pivoting operation.

For every new column in a Gaussian Elimination process, we 1st perform a partial pivot
to ensure a non-zero value in the diagonal element before zeroing the values below.

The Gaussian Elimination algorithm, modified to include partial pivoting, is

For i= 1, 2, …, N-1 % iterate over columns

¾ select row j > i such that }a,...,a,a{maxa iN,i1,iiiijji +≥=
¾ if aji = 0, no unique solution exists, STOP
¾ if j i, interchange rows i and j ≠

For j = i+1, i+2, …, N % rows in column i below diagonal

 >
iia

a jiλ ←

For k = i, i+1, …, N % elements in row j from left Æ right
 >ajk Å ajk - ikλa
end
>bj Å bj - iλb

 end
end

Backward substitution then proceeds, in the same manner as before.

Even if rows must be swapped at each column, computational overhead of partial
pivoting is low, and gain in robustness is large!

To demonstrate how Gaussian Elimination with partial pivoting is performed, let us
consider the system of equations with the augmented matrix

 (A, b) = pivot (1.2.3-8)

















2 6 1 3
7 3 1 2

4 1 1 1

First, we examine the elements in the 1st column to see that the element of largest
magnitude is found in row #3.
We therefore perform a partial pivot to interchange rows 1 and 3.

)b,A(= (1.2.3-9)
















4 1 1 1
7 3 1 2
2 6 1 3

We now perform a row operation to zero the (2,1) element

3
2

a
aλ

11

21
21 == (1.2.3-10)

























−






−






−






−=

4 1 1 1

2
3
27 6

3
23 1

3
21 3

3
22

2 6 1 3

)b,(A (2,1)(2,1)

=



















4 1 1 1
3
25 1

3
1 0

2 6 1 3

 (1.2.3-11)

We now perform another row operation to zero the (3,1) element

3
1

a
a

λ (2,1)
11

(2,1)
31

31 == (1.2.3-12)

























































=

 2
3
1-4 6

3
1-1 1

3
1-1 3

3
1-1

3
25 1-

3
1 0

2 6 1 3

)b,(A (3,1)(3,1)

=























3
13 1-

3
2 0

3
25 1-

3
1 0

2 6 1 3

 (1.2.3-13)

We now move to the 2nd column, and note that the element of largest magnitude appears
in the 3rd row. We therefore perform a partial pivot to swap rows 2 and 3.

)b,(A -(3,1)-(3,1) =























3
25 1-

3
1 0

3
13 1-

3
2 0

2 6 1 3

 (1.2.3-14)

We now perform a row operation to zero the (3,2) element.

2
1

3
2
3
1

λ32 == (1.2.3-15)

)b,(A (3,2)(3,2) =

() 





























−








3
13

2
1-

3
25 1

2
1-1-

3
2

2
1-

3
1 0

3
13 1-

3
2 0

2 6 1 3

=























− 4
2
1 0 0

3
13 1-

3
2 0

2 6 1 3

 (1.2.3-16)

After the elimination method, we have an upper triangular form that is easy to solve by
backward substitution.

We write out the system of equations,

3x1 + x2 + 6x3 = 2
2
3

x2 − x3 = 3
1
3

−
1
2

x3 = 4

(1.2.3-17)

First, we find
x3 = −8
(1.2.3-18)

Then, from the 2nd equation,

(1.2.3-19)

x2 =
(3

1
3

+ x3)

2
3

= −7

And finally from the 1st equation

(1.2.3-20)

x1 =
(2 − 6x3 − x2)

3
= 19

The solution is therefore

x =
19
−7
−8















(1.2.3-21)

Note that in our partial pivoting algorith rows to make sure that the largest

his may seem like wasted effort, but there is a very good reason to do so. It reduces the

 we were to look at the memory in a computer, we would find data represented digitally

0100101 00101011 , …..

o store a real number in memory, we need to represent it in such format. This is done

m, we swap
magnitude element in each column at and below the diagonal is found in the diagonal
position. We do this even if the diagonal element is non-zero.

T
"round-off error" in the final answer. To see why, we must consider briefly how numbers
are stored in a computer's memory.

If
as a sequence of 0'a and 1's

0
----------- -------------
byte # i byte # i+1

T
using floating point notation.

Let f be a real number that we want to store in memory. We do so by representing it as

hat we write as

Each

And so is represented by one bit in mem y. e is an integer exponent in the range

e is also stored as a binary number, for e allocate a byte (8 bits) to storing e,
then

some value

f ≈ f
~

T

t= machine precision
f [d1 2 d2 2 ...dt 2]

(1.2.3-22)

or

~
= ± ∗ e −1 + ∗ e −2 + ∗ e−t

d i = 0 or 1

L ≤ e ≤ U

(1.2.3-23)

L ≡ underflow limit
U = overflow limit

example if w

±
e7

0
e6

0
e5

0
e4

0
e3

0
e2

1
e1

1
e0

= 3

(1.2.3-24)&(1.2.3-25)
The largest e is when

For which

So, say in general

Where k depends on number of bits allocated to store e. (1.2.3-27)

e = e0 ∗ 20 + e1 ∗ 21

(1.2.3-26)
k= 0

+ e2 ∗22 + e3 ∗ 23 + e4 ∗ 24 + e5 ∗ 25 + e6 ∗26e0 = e1 = e2 = ... = e6 = 1

emax = 20 + 21 + 22 + 23 + 24 + 25 + 26 = 2k6∑ = 27 −1

emax ≈ 2k

For the largest magnitude variable that can be stored in memory, M

M =

87654321d d
1

d
1

d
1

d
1

d
1

d
1

d
10

1 =±

123456 e
1

e
1

e
1

e
1

e
1

e
10

±
 (1.2.3-34)

[]8e7e6e5e4e3e2e1e 22222222M −−−−−−−− ++++++++= (1.2.3-35)

 (1.2.3-36)

so

 (1.2.3-37)

ral, for machine precision t and = 2 ,

where
642e 6 +=+=

ti

19
8

1k

ke 1.8375x102M == ∑
=

−

k

,

In gene

∑ ∑ ∑ ∑
= = = =

−
−− 














=






===

t

1i

t

1i

t

1i 1i

1i
UUiUiU

2
1

2
12

2
12222M (1.2.3-38)

We now use the identity for a geometric progression

1x,1xx
N

N 1i ≠
−

=∑ −

]t−2 (1.2.3-

1x1i −=
 (1.2.3-39)

to write

[U

t

UM −=






 −







= 12

1
2
1
2

2
12

−



 11

40)

at, for a given t and k (i.e. how much memory we wish to allocate to storing
ach number), there is a maximum and minimum magnitude to the real numbers that can

be represented.

We see th
e

Mfm ≤≤
~

For t = 8, for various k, U = 2k, we have the following m and M,

k U=2k=-L m = 2L-1 M = 2U(1-2-t)
4 16 ~ 7.36x10-6 ~ 6.53x104
6 64 ~ 2.71x10-20 ~1.84x1019
8 256 ~ 4.32x10-78 ~ 1.15x1077

The typical representation on a 32-bit machine is

__ __ __ __ __ __ __ __ __ __
 +/- 8 bit exponent +/-

__

23 bit mantissa

total = 32 bits for each real number

 we wish to store a real number f in memory, in
general f cannot be exactly represented by a finite set of bits in floating point notation;

certainly this is tru

The important point to note is that when

e for e,,1 π . Instead, we represent it with the closest possible value
3

so that the difference between the “true” value of f and the represented value f is called
the round-off error, rd(f)

~
−=

[]teeedf −−−∗±= 2 21
1

~

M≤ , from (1.2.3-22), w

tdd ∗+∗+ 2...22 (1.2.3-22, repeated)

 (1.2.3-41)

For binary representation of a number f with

~

the magnitude of the round-off error is

)(fffrd

fm ≤

e see that

 (1.2.3-42)

where we define the machine precision

eette epsfrd 2)(222~)(∗∗= −− =

 as

(eps) = 2-t, see MATLAB command “eps” (1.2.3-43)

Let us write rd(f) = rf(eps)x2e
f (1.2.3-44)

Where

rf is some number of O(1 (i.e. is on the order of 1)
ef = exponent of f

o f, also O(1) (1.2.3-45)

)

We write f
f x2mf = , where mf = mantissa e

~

f

Then,

m2
(ep

m
r

f

rd(f)

f
e

f

f
~ f

= (eps)r2s)x f
ef

= (1.2.3-46)

or (1.2.3-47)

o, when we initially assign a value in memory, the round-off error may be small. We
want to make sure that this initial small error, as it propagates through our algorithms,
does not “blow up” to become large.

For example, let us take the difference of two close, large numbers

f = 3.000 0001x106

f-g = 0.01 so

F
~
frd(f)1,eps <<<<

S

g = 3.000 00009x106

(1.2.3-48)

g,fgf <<−

rd(f-g) = rd (1.2.3-52)

 (1.2.3-49)

 (1.

 (1.2.3-51)
so

(f) – rd(g)

If rd(g)gg rd(f),ff
~~
+=+= 2.3-50)

rd(g)rd(f) −][gfgf
~

+−=−
~

Let us write

rd(f) = rf(eps)x2e
f, rd(g) = rg(eps)x2e

g (1.2.3-53)

 (1.2.3-54)

then

ge
g

~e
f

~
x2mg ,x2mf ==

gf

gf

gf

ee~~

2m2m

(eps)2rr

gf

)gfrd(
−

−

−

−

– mg << 1

ee

gf
~~

(eps)2
= (1.2.3-55)

Let us now take the case of numbers like

f = 3.000 0001x106

g = 3.000 00009x106 (1.2.3-48, repeated)

for which, in binary or decimal notation, ef = eg and mf

Then

gf

~~

mgf −−

()− gf
~~

(eps)rr)gfrd(
=

− (1.2.3-56)
m

as (r -r) = O(1) mf – mg << 1, we see that compared to

f g

(eps)
m
r

f

rd(f)

f

f
~ =

 similar numbers therefore
lated round-off error in th

 (1.2.3-46, repeated)

~~~~

~~
rd(g),rd(f))gfrd(

>>
−

gfgf −
     (1.2.3-57) 

Taking the difference between two large,  is bad, from the view 
of propagation of error, since the accumu e result is much larger 
than it should be from a direct assignment. 
 
 
 
 

 

 
 
 
 
 
 



We wish to design, and operate, our algorithms so that the accumulated round-off errors 
o not grow larger, and ideally decay to zero.  If error “blows up”, the errors become 
rger in magnitude than the values that we are trying to represent, and we get instability 
at crashes the program. 

or example, let us say that we wish to perform the operation 

d
la
th
 
F
 

baa λ−←      (1.2.3-58) 
We really perform the operation on their floating point representations 

~~~~
λ−←

~
baa (1.2.3-59)

ince , we subtract these equations

 (1.2.3-60)

If , we can write

)(aaard −=

brdardard +−←)()()(λ

S

newebbardard ++−←)()(λλ
~~

λλ =
~

In Gaussian elimination

newe (1.2.3-61)

If λ > 1, any round-off error in b is magnified during this operation, but if λ

iia
By performing partial pivoting, we ensure jiii aa > , so λ < 1 and the algorithm h

< 1, then
error accumulated to date by b is decreased a lue of a.

, we perform a number of operations

s it is “passed” to the new va

ji
ikjkjk

a
aaa =−← λλ , (1.2.3-62)

as
vorable error propagation characteristics.

fa

We can further enhance this favorable property of error propagation by performing
complete, or full, pivoting.

the
s as well. The pivoting involves not merely interchange of

ws, but also of columns. This makes the book keeping more complex as column
terchange implies an interchange of the values of the unknowns in their position in the
lution vector x

In complete pivoting, one searches for the maximum magnitude element not only in
current column, but in other
ro
in
so . While full pivoting improves the accuracy of calculation, by more

pidly decaying the round-off error, it is not strictly necessary for systems that are well-
alanced, i.e. all elements along any given row ai1, ai2…,aiN are all of the same order of

nted by a computer. It
ither returns a solution to the linear system, or, if no non-zero pivot element if found, it
cognizes that there is no unique solution and STOP’s.

quations, etc. First, we must
xamine in closer detail the existence and uniqueness of solutions.

ra
b
magnitude. We therefore do not discuss this technique further.

We now note that with the addition of partial pivoting, Gaussian elimination provides a
robust method of solving linear equations that is easily impleme
e
re

We therefore have a dependable method that can be used in higher-level algorithms to
solve non-linear algebraic equations, partial differential e
e

