
1.2.3 Pivoting Techniques in Gaussian Elimination 
 
Let us consider again the 1st row operation in Gaussian Elimination, where we start with 
the original augmented matrix of the system 
 

(A, b) =      (1.2.3-1) 
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and perform the following row operation, 
 
 
(A(2,1), b(2,1)) = 
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(1.2.3-2) 
 

To place a zero at the (2,1) position as desired, we want to define λ   as 21
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21 a

aλ =      (1.2.3-3) 

 
but what happens if a11 = 0? => ! toup blows λ 21 ∞±  
 
The technique of partial pivoting is designed to avoid such problems and make Gaussian 
Elimination a more robust method. 
 
 

 
 
 
 
 
 
 
 
 
 



Let us first examine the elements of the 1st column of A, 
 

A(: , 1) =      (1.2.3-4) 
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Let us search all the elements of this column to find the row #j that contains the value 
with the largest magnitude, i.e. 
 

N ..., 2, 1,k allfor  aa k1ji =≥      (1.2.3-5) 
 

}a{maxa

or

k1N][1,kj1 ∈=      (1.2.3-6) 

 
Since the order of the equations does not matter, we are perfectly free to exchange rows  
# 1 and j to form the system            
 

( )b,A =                 row # j                   row # 1     
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(1.2.3-7) 
 

Now, as long as any of the elements of the 1st column of A are non-zero, aj1 is non-zero 
and we are safe to begin eliminating the values below the diagonal in the 1st column. 
 
If all the elements of the 1st column are zero, we immediately see that no equation in the 
system makes reference to the unknown x, and so there is no unique solution.  We 
therefore stop the elimination process at this point and “give up”. 
 
 
 
 
 
 
 
 



The row-swapping procedure outlined in (1.2.3-1), (1.2.3-6), (1.2.3-7) is known as a 
partial pivoting operation. 
 
For every new column in a Gaussian Elimination process, we 1st perform a partial pivot 
to ensure a non-zero value in the diagonal element before zeroing the values below. 
 
The Gaussian Elimination algorithm, modified to include partial pivoting, is 
 
For i= 1, 2, …, N-1      % iterate over columns 

¾ select row j > i such that }a,...,a,a{maxa iN,i1,iiiijji +≥=  
¾ if aji = 0, no unique solution exists, STOP 
¾ if j i, interchange rows i and j ≠
 

For j = i+1, i+2, …, N    % rows in column i below diagonal 

 >
iia

a jiλ ←  

For k = i, i+1, …, N     % elements in row j from left Æ right 
 >ajk Å ajk -  ikλa
end 
>bj Å bj -  iλb

 end 
end  
 
 
 
 
 
 
Backward substitution then proceeds, in the same manner as before. 
 
 
 
 
 
 
Even if rows must be swapped at each column, computational overhead of partial 
pivoting is low, and gain in robustness is large! 

 
 
 
 
 
 
 
 



To demonstrate how Gaussian Elimination with partial pivoting is performed, let us 
consider the system of equations with the augmented matrix 
 

                                        (A, b) =               pivot     (1.2.3-8) 
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First, we examine the elements in the 1st column to see that the element of largest 
magnitude is found in row #3. 
We therefore perform a partial pivot to interchange rows 1 and 3. 

 

)b,A( =      (1.2.3-9) 
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We now perform a row operation to zero the (2,1) element 
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We now perform another row operation to zero the (3,1) element 
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We now move to the 2nd column, and note that the element of largest magnitude appears 
in the 3rd row.  We therefore perform a partial pivot to swap rows 2 and 3. 
 

)b,(A -(3,1)-(3,1) =
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We now perform a row operation to zero the (3,2) element. 
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After the elimination method, we have an upper triangular form that is easy to solve by 
backward substitution. 
 
 
 
We write out the system of equations, 

3x1 + x2 + 6x3 = 2
2
3

x2 − x3 = 3
1
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x3 = 4

 
(1.2.3-17) 

First, we find  
x3 = −8
(1.2.3-18) 

Then, from the 2nd equation, 

 
(1.2.3-19) 
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And finally from the 1st equation 

(1.2.3-20) 

x1 =
(2 − 6x3 − x2 )

3
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The solution is therefore 
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Note that in our partial pivoting algorith  rows to make sure that the largest 

his may seem like wasted effort, but there is a very good reason to do so.  It reduces the 

 we were to look at the memory in a computer, we would find data represented digitally 

0100101   00101011 , ….. 

o store a real number in memory, we need to represent it in such format.  This is done 

m, we swap
magnitude element in each column at and below the diagonal is found in the diagonal 
position.  We do this even if the diagonal element is non-zero. 
 
T
"round-off error" in the final answer.  To see why, we must consider briefly how numbers 
are stored in a computer's memory. 
 
 
 
 
 
 
 
 
If
as a sequence of 0'a and 1's 
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byte # i        byte # i+1 
 
T
using floating point notation. 
 
Let f be a real number that we want to store in memory.  We do so by representing it as 

 
hat we write as 

Each 

And so is represented by one bit in mem y.  e is an integer exponent in the range 

e is also stored as a binary number, for e allocate a byte (8 bits) to storing e, 
then 

some value  
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~
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t= machine precision 
f [d1 2 d2 2 ...dt 2 ]

(1.2.3-22) 

or

~
= ± ∗ e −1 + ∗ e −2 + ∗ e−t

d i = 0 or 1

L ≤ e ≤ U

(1.2.3-23) 

L ≡ underflow limit
U = overflow limit
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(1.2.3-24)&(1.2.3-25) 
The largest e is when 

 
For which 

 
So, say in general 

Where k depends on number of bits allocated to store e.     (1.2.3-27) 

 
 

 
 

e = e0 ∗ 20 + e1 ∗ 21

(1.2.3-26)
k= 0

+ e2 ∗22 + e3 ∗ 23 + e4 ∗ 24 + e5 ∗ 25 + e6 ∗26e0 = e1 = e2 = ... = e6 = 1

emax = 20 + 21 + 22 + 23 + 24 + 25 + 26 = 2k6∑ = 27 −1

emax ≈ 2k

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



For the largest magnitude variable that can be stored in memory, M 
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We now use the identity for a geometric progression
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at, for a given t and k (i.e. how much memory we wish to allocate to storing 
ach number), there is a maximum and minimum magnitude to the real numbers that can 

be represented. 
 

We see th
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For t = 8, for various k, U = 2k, we have the following m and M, 
 

k U=2k=-L m = 2L-1 M = 2U(1-2-t) 
4 16 ~ 7.36x10-6 ~ 6.53x104 
6 64 ~ 2.71x10-20 ~1.84x1019 
8 256 ~ 4.32x10-78 ~ 1.15x1077 

 
 
 



The typical representation on a 32-bit machine is 
 

__     __ __ __ __ __ __ __ __      __       
  +/-          8 bit exponent                  +/- 

 
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 

23 bit mantissa 

total = 32 bits for each real number 
 

 we wish to store a real number f in memory, in 
general f cannot be exactly represented by a finite set of bits in floating point notation; 

certainly this is tru

 

The important point to note is that when

e for e,,1 π .  Instead, we represent it with the closest possible value 
3

so that the difference between the “true” value of f and the represented value f  is called 
the round-off error, rd(f) 
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For binary representation of a number f with 
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where we define the machine precision
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(eps) = 2-t, see MATLAB command “eps”     (1.2.3-43) 
 

 

 
 

 

 

 
 
 
 
 
 
 
 
 



Let us write rd(f) = rf(eps)x2e
f     (1.2.3-44) 

 
Where  

rf is some number of O(1 (i.e. is on the order of 1) 
ef = exponent of f 

o  f, also O(1)     (1.2.3-45) 
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or      (1.2.3-47) 

o, when we initially assign a value in memory, the round-off error may be small.  We 
want to make sure that this initial small error, as it propagates through our algorithms, 
does not “blow up” to become large. 

For example, let us take the difference of two close, large numbers 
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g = 3.000 00009x106 

(1.2.3-48) 
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Let us write 
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Let us now take the case of numbers like 

f = 3.000 0001x106 

g = 3.000 00009x106     (1.2.3-48, repeated) 
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Taking the difference between two large,  is bad, from the view 
of propagation of error, since the accumu e result is much larger 
than it should be from a direct assignment. 
 
 
 
 

 

 
 
 
 
 
 



We wish to design, and operate, our algorithms so that the accumulated round-off errors 
o not grow larger, and ideally decay to zero.  If error “blows up”, the errors become 
rger in magnitude than the values that we are trying to represent, and we get instability 
at crashes the program. 

or example, let us say that we wish to perform the operation 
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baa λ−←      (1.2.3-58) 
We really perform the operation on their floating point representations 
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If λ > 1, any round-off error in b is magnified during this operation, but if λ
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We can further enhance this favorable property of error propagation by performing 
complete, or full, pivoting. 
 
 
 
 
 

the 
s as well.  The pivoting involves not merely interchange of 

ws, but also of columns.  This makes the book keeping more complex as column 
terchange implies an interchange of the values of the unknowns in their position in the 
lution vector x

In complete pivoting, one searches for the maximum magnitude element not only in 
current column, but in other
ro
in
so .  While full pivoting improves the accuracy of calculation, by more 

pidly decaying the round-off error, it is not strictly necessary for systems that are well-
alanced, i.e. all elements along any given row ai1, ai2…,aiN are all of the same order of 

nted by a computer.  It 
ither returns a solution to the linear system, or, if no non-zero pivot element if found, it 
cognizes that there is no unique solution and STOP’s. 

quations, etc.  First, we must 
xamine in closer detail the existence and uniqueness of solutions. 
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magnitude.  We therefore do not discuss this technique further. 
 
 
 
 
 
We now note that with the addition of partial pivoting, Gaussian elimination provides a 
robust method of solving linear equations that is easily impleme
e
re
 
 
 
 
 
We therefore have a dependable method that can be used in higher-level algorithms to 
solve non-linear algebraic equations, partial differential e
e

 


