
1.3.2 Multiplication of Matrices/Matrix Transpose 
 

In section 1.3.1, we considered only square matrices, as these are of interest in solving 
linear problems Ax = b. 
 
The interpretation of a matrix as a linear transformation can be extended to non-square 
matrix.  If we consider a M x N real matrix A, then A maps every vector v∈RN into a 
vector (now of dimensions m, not N) A v∈RN, according to the rule 
 

Av =      (1.3.2-1) 
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Note that the product Av is defined only if the number of columns of A equals the 
dimensions (# of components) of v. 
 
We give the M x N matrix A, with all aij real, the following pictorial interpretation: 
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The interpretation of non-square matrices as linear transformations provides the 
following rule for multiplying two real matrices: 
 
Let A be a M x P real matrix, and let B be a P x N real matrix.  We define C = AB to be 
the M x N matrix (also real) that performs the same transformation to a vector v∈RN as 
1st applying B, then A. 
 
          RN                       B                              Rp                               A                           RM 
           v                                 Bv                                                  A(Bx) 
 
 
 
 
 
    C = AB 
 
First, to v∈RN we apply B, 
 

Bv =      (1.3.2-2) 
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We then apply A to Bv ∈Rp, 
 

A(Bv) =      (1.3.2-3) 
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If we compare to 
 

Cv =      (1.3.2-4) 
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 We see that rearranging (1.3.2-2) yields 
 
 

A(Bv) =      (1.3.2-5) 
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The (i,j) element of the matrix C = AB is therefore 
 

Cij = ∑ =

p

1k kjik ba       (1.3.2-6) 
 

We compute this element by summing the product of elements A along row #I from left 
 right with those elements of B in column #j from top  bottom. 
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            column # j       
 
row # i 
 
We note that the product of two matrices A and B, C = AB, is defined only if the number 
of columns of A equals the number of rows of B. 
 
Note also that in general AB  BA (1.3.2-8).  We define the ≠ commutator of A and B as  

[A,B]≡A B – BA     (1.3.2-9) 
 



Note that we can interpret our rule for multiplying a vector v∈RN by an M x N matrix A 
by considering v to be a matrix of dimension N x 1, i.e. a  column vector. 
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  =      (1.3.2-10) 
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This is the convention that we will use.  We can also write v as a row vector by taking the 
transpose, 
 

vT = [v1     v2   …   vN]     (1.3.2-11) 
 

We see that vT is a 1 x N matrix. 
The dot product wv •  can therefore be written for v, w ∈RN 

 

wv • = vTw = [v1     v2   …   vN]  = v
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We define a matrix transpose operation on a real matrix A of M rows and N columns 
as 
 

AT =       (1.3.2-13) =
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If A is an M x N matrix, AT is N x M and (AT)ij = aji     (1.3.2-14) 
 
 

 


