1.3.2 Multiplication of Matrices/Matrix Transpose

In section 1.3.1, we considered only square matrices, as these are of interest in solving
linear problems Ax = b.

The interpretation of a matrix as a linear transformation can be extended to non-square
matrix. If we consider a M x N real matrix A, then A maps every vector ve R" into a
vector (now of dimensions m, not N) A ve R", according to the rule
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Note that the product Ay is defined only if the number of columns of A equals the
dimensions (# of components) of v.

We give the M x N matrix A, with all aj; real, the following pictorial interpretation:




The interpretation of non-square matrices as linear transformations provides the
following rule for multiplying two real matrices:

Let A be a M x P real matrix, and let B be a P x N real matrix. We define C = AB to be
the M x N matrix (also real) that performs the same transformation to a vector ve R" as
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We see that rearranging (1.3.2-2) yields
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The (i,j) element of the matrix C = AB is therefore

Ci= Y, a,b, (1.3.2-6)
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We compute this element by summing the product of elements A along row #I from left
-> right with those elements of B in column #j from top = bottom.
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We note that the product of two matrices A and B, C = AB, is defined only if the number
of columns of A equals the number of rows of B.

Note also that in general AB # BA (1.3.2-8). We define the commutator of A and B as
[A.B]I=AB-BA (1.3.2-9)



Note that we can interpret our rule for multiplying a vector ve R" by an M x N matrix A
by considering v to be a matrix of dimension N x 1, i.e. a column vector.
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This is the convention that we will use. We can also write v as a row vector by taking the
transpose,
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We see that yT is a 1 x N matrix.
The dot product v e w can therefore be written for v, w € R"
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We define a matrix transpose operation on a real matrix A of M rows and N columns

as
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If A is an M x N matrix, A" is N x M and (A"); =a;  (1.3.2-14)



