
1.3.3 Basis sets and Gram-Schmidt Orthogonalization 
 

Before we address the question of existence and uniqueness, we must establish one more 
tool for working with vectors – basis sets. 
 

Let v ∈RN, with v =      (1.3.3-1) 
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We can obviously define the set of N unit vectors 
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e[N] =      (1.3.3-2) 
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so that we can write v as 

v = v1e[1] + v2e[2] + … + vNe[N]     (1.3.3-3) 
 

As any v ∈RN can be written in this manner, the set of vectors {e[1], e[2], … e[N]} are said 
to form a basis for the vector space RN. 
 
The same function can be performed by any set of mutually orthogonal vectors, i.e. a set 
of vectors {U[1], U[2], …, U[N]} such that 
 

kj if     0UU [k][j] ≠=• (1.3.3-4) 
 

This means that each U[j] is mutually orthogonal to all of the other vectors.  We can then 
write any v∈RN as 
 

                           v = [N]'
N
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[1]'
1 ev...evev +++      (1.3.3-5)                       U[1] 

 
Where we use a prime to denote that 
                                                                                                                         90 deg. 
                                                             (1.3.3-6)                                                  j

'
j vv ≠ U[3]        

                                                                                                                  90 deg. 
when comparing the expansions (1.3.3-3) and (1.3.3-5) 
                                                                                                               U[2] 

 

 



Orthogonal basis sets are very easy to use since the coefficients of a vector v∈RN in the 
expansion are easily determined. 
 
We take the dot product of (1.3.3-5) with any basis vector U[k], k∈[1,N], 
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Because 
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then (1.3.3-6) becomes 
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In the special case that all basis vectors are normalized, i.e. [k]U =1 for all k∈[1,N], we 

have an orthonormal basis set, and the coefficients of  v∈RN are simply the dot products 
with each basis set vector. 
 
Exmaple 1.3.3-1 
 
Consider the orthogonal basis for R3 
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U [3][2][1]      (1.3.3-10) 

 

for any v∈R3, v = what are the coefficients of the expansion     
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First, we check the basis set for orthogonality 

[2][2] UU • = [ 1   1   0] = (1)(1) + (1)(-1) + (0)(0) = 0 
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[3][1] UU • = [ 1   1   0] = (1)(0) + (1)(0) + (0)(1) = 0     (1.3.3-12) 
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[3][2] UU • = [1   -1   0] = (1)(0) + (-1)(0) + (0)(1) = 0 
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We also have 

=
2[1]U [1   1   0] = 2   
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(1.3.3-13) 

So the coefficients of v =  are 
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Although orthogonal basis sets are very convenient to use, a set of N vectors B = {b[1], 
b[2], …, b[N]} need not be mutually orthogonal to be used as a basis – they need merely be 
linearly independent. 
 
Let us consider a set of M N vectors ≤  b[1], b[2], …, b[M] ∈RN.  This set of M vectors is 
said to be linearly independent if 
 

c1b[1] + c2b[2] + … + cMb[M] = 0     implies c1=c2=…=cM=0     (1.3.3-16) 
 
This means that no b[j], j∈[1,M] can be written as a linear combination of the other M-1 
basis vectors. 
 
For example, the set of 3 vectors for R3 
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b[3] =      (1.3.3-17) 
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is not linearly independent because we can write b[3] as a linear combination of b[1] and 
b[2], 
 

b[1] - b[2] =  -  =     = 
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Here, a vector v ∈RN is said to be a linear combination of the vectors b[1], …, b[M] ∈RN if 
it can be written as 
 

v = [M]'
M
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1 bv...bvbv +++      (1.3.3-19) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



We see that the 3 vectors of (1.3.3-17) do not form a basis for R3 since we cannot express 
any vector v ∈R3 with v as a linear combination of {03 ≠ b[1], b[2], b[3]} since 
 

v = +  + v =      (1.3.3-20) 
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We see however that if we instead had the set of 3 linearly independent vectors 
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b[3] =           (1.3.3-21) 
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then we could write any v∈R3 as 
 

v = = v +  + =      (1.3.3-22) 
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(1.3.3-22) defines a set of 3 simultaneous linear equations 
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We therefore make the following statement: 
 
Any set B of N linearly independent vectors b[1], b[2], …, b[N] ∈RN can be used as a basis 
for RN. 
 
We can pick any M subset of the linearly independent basis B, and define the span of this 
subset {b[1], b[2], …, b[M]}  B as the space of all possible vectors ⊂ v ∈RN that can be 
written as 
 
 

v = c1b[1] + c2b[2] + … + cMb[M]     (1.3.3-25) 
 

For the basis set (1.3.3-21), we choose b[1] = 
  and  












0
0
2

b[3] = .(1.3.3-26) 
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Then, span { b[1] ,  b[3] } is the set of all vectors v  ∈R3 that can be written as 
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Therefore, for this case it is easy to see that v ∈  span { b[1] ,  b[3] }, if and only if (“iff”) 
v2 = 0. 
 
Note that if v∈span{ b[1] ,  b[3] } and w∈  span{ b[1] ,  b[3] }, then automatically  
v + w ∈span { b[1] ,  b[3] }. 
 
We see then that span{ b[1] ,  b[3] } itself satisfies all the properties of a vector space 
identified in section 1.3.1. 
 
Since span{ b[1] ,  b[3] }  R⊂ 3 (i.e. it is a subset of R3), we call span{ b[1] ,  b[3] } a 
subspace of R3. 
 
 
 
 
 
 
 
 
 
 



This concept of basis sets also lets us formally identify the meaning of dimension – this 
will be useful in the establishment of criteria for existence/uniqueness of solutions. 
 
Let us consider a vector space V that satisfies all the properties of a vector space 
identified in section 1.3.1. 
We say that the dimension of V is N if every set of N+1 vectors v[1], v[2], …, v[N+1] ∈V is 
linearly independent and if there exists some set of N linearly independent vectors  
b[1], …, b[N] ∈  V that forms a basis for V.  We say then that dim(V) = N.     (1.3.3-28) 
 
 
While linearly independent basis sets are completely valid, they are more difficult to use 
than orthogonal basis sets because one must solve a set of N linear algebraic equations to 
find the coefficients of the expansion 
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              O(N3) effort to solve for all vj’s         (1.3.3-30) 

 
This requires more effort for an orthogonal basis {U[1], … , U[N]} as 
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This provides an impetus to perform Gramm-Schmidt orthogonalization.  We start with a 
linearly independent basis set {b[1], b[2], …, b[N]} for RN.  From this set, we construct an 
orthogonal basis set {U[1], U[2], …, U[N]} through the following procedure: 
 
1.  First, set U[1] = b[1]     (1.3.3-31) 
 
2. Next, we construct U[2] such that 0UU [1][2] =• .  Since U[1] = b[1], and b[2] and b[1] are 
linearly independent, we can form an orthogonal vector U[2] from b[2] by the following 
procedure: 
    
     U[2]    
                    cU[1]               b[2] 
 

 
 

                                                                b[1] = U[1] 
              “subtract” this part  
              from b[2] 
 

We write U[2] = b[2] + cU[1]     (1.3.3-32) 
 
Then, taking the dot product with U[1],  
 

0UU [1][2] =• = [1][1][1][2] UUcUb •+•       (1.3.3-33) 
 
Therefore  

c = 
2[1]U

[1]U[2]b •−      (1.3.3-34) 

 
And our 2nd vector in the orthogonal basis is  

U[2] = b[2] - [1]
2[1]

[1][2]

U
U

Ub
















•      (1.3.3-35) 

 
 
 
 
 
 
 
 
 
 



3. We now form U[3] in a similar manner. 
Since U[2] is a linear combination of b[1] and b[2], we can add a component from b[3] 
direction to form U[3], 
 

U[3] = b[3] + c2U[2] + c1U[1]     (1.3.3-36) 
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A similar condition that 0UU [2][3] =•  yields 
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so that the 3rd member of the orthogonal basis set is 
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4. Continue for U[j], j = 4, 5, …, N where 
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5. Normalize vectors if desired (we can do this also during construction of 

orthogonal basis set) 
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As an example, let us use this method to generate an orthogonal basis for R3 such that the 
1st member of the basis set is 
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First, we write a linearly independent basis that is not, in general, orthogonal.  For 
example, we could choose 
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We now perform Gram-Schmidt orthogonalization, 
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2[1]U = [1   1   0] = 2     (1.3.3-46) 
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[1][2] Ub •  = [1   0   0] =1     (1.3.3-47) 
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Note [1][2] UU •  = [1/2   -1/2   0] = ½ - ½ = 0     (1.3.3-49) 
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We now calculate  
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







•

−


















•  

(1.3.3-41, repeated) 

2[2]U = [1/2   -1/2   0] 

























−

0
2
1

2
1

= 
2
1

4
1

4
1

2
1

2
1 22

=+=





−+






      (1.3.3-50) 

[2][3] Ub • = [0   0   1] 

























−

0
2
1

2
1

= 0     (1.3.3-51) 

[1][3] Ub • = [0   0   1] = 0     (1.3.3-52) 
















0
1
1

 

We therefore have merely U[3] = b[3] =     (1.3.3-53) 
















1
0
0

 

 



U[1] =         
















0
1
1

U[2] = 

























−

0
2
1

2
1

        U[3] =     (1.3.3-54) 
















1
0
0

 
 

Our orthogonal basis set is therefore 


