1.3.3 Basis sets and Gram-Schmidt Orthogonalization

Before we address the question of existence and uniqueness, we must establish one more
tool for working with vectors — basis sets.

Letv eRY, withv=| *| (13.3-1)
\£!

We can obviously define the set of N unit vectors

_1_ —O— _O_
1 0

el = P=1o| ... M=]0| 1332
0] 0] L]

so that we can write v as

v=ve

+ve? + L+ ve™ (1.3.3-3)

[2]

Asany v € R" can be written in this manner, the set of vectors {g[”, e, ... g[N]} are said

to form a basis for the vector space R".

The same function can be performed by any set of mutually orthogonal vectors, i.e. a set
of vectors {Q“], Q[z], oo Q[N]} such that

UYeUM =0 if j£k(1.3.3-4)

This means that each UY is mutually orthogonal to all of the other vectors. We can then
write any ve R" as

v=vie +v,e + +vie™  (1.3.3-5) yt
Where we use a prime to denote that

vizv, (1.3.3-6) yt!

] J

when comparing the expansions (1.3.3-3) and (1.3.3-5)



Orthogonal basis sets are very easy to use since the coefficients of a vector ve R" in the
expansion are easily determined.

We take the dot product of (1.3.3-5) with any basis vector UM ke [1,N],

veU" =vi(U" e U+ . +v, (U e UM+ +v (UM e UY)  (1.3.3-6)

Because

Ul e Ut = (UM o U™ )3, = ‘g[k] 8, (1.3.3-7)

‘2
with

5 = lI=k (1.3.3-8)
oloj=k T

then (1.3.3-6) becomes
k
, 2 ,
veU¥ = vk\g“‘]\ —v. = Y°_—2 (1.3.3-9)
ju™]

In the special case that all basis vectors are normalized, i.e. ‘g“‘]‘ =1 for all ke [1,N], we

have an orthonormal basis set, and the coefficients of veR" are simply the dot products
with each basis set vector.

Exmaple 1.3.3-1

Consider the orthogonal basis for R’

1 1 0
U =1 U =] -1 U=10| (1.3.3-10)
0 0 1
Vi

forany ve R’ v= v, what are the coefficients of the expansion

V3

v=v,U"+v, U +v, U (1.3.3-11)



First, we check the basis set for orthogonality

1
UPeUP=11 1 0]|=1|=(1)(1)+(1)(-1)+ (0)(0)=0
0
0
UMeU™M=[1 1 0][0|=(1)(0)+(1)(0)+(0)1)=0
1
0
U e UM=[1 -1 0]|0|=(1)(0)+ (-1)(0) + (0)(1)=0
1
We also have
1
U =10y 1|2
0
1
U = 1 0p|-1]=2
0
0
u”[ =[0 o 11]0|-1
1
(1.3.3-13)
Vi
So the coefficients of v=| v, | are
V3
1
1
v'l—yg[z] =1[V1 V2 va] |1 =l(V1+V2)
ytt 2 0 2
1
2
V2=X.g[2] Zl[V1 Vo v3] [ =1|= = (Vi-V2)
Q[z] 2 0
. veUP 1 °
vV, === =I[V1 vo v3] |0|=v3

(1.3.3-12)



Although orthogonal basis sets are very convenient to use, a set of N vectors B = {b!"]
b¥! ..., b™"} need not be mutually orthogonal to be used as a basis — they need merely be
linearly independent.

Let us consider a set of M<N vectors p“], h[z], oo lg[M] e R". This set of M vectors is
said to be linearly independent if

clhm + czh[z] + ...+ ch[M] =0 implies ¢c;=c,=...=cpy=0 (1.3.3-16)

This means that no bm, j€[1,M] can be written as a linear combination of the other M-1
basis vectors.

For example, the set of 3 vectors for R’
2 1

b=10| b¥=11| b¥=|-1| @@33-17)
0 0

is not linearly independent because we can write hm as a linear combination of h“] and
el

2 1 1
e =10|-|1]|=|-1| =b"* (1.3.3-18)
0 0 0
Here, a vector v e R" is said to be a linear combination of the vectors b[l], oo h[M] eRNif

it can be written as

(2]

v=v b+ v, b7+ +v,b™  (1.3.3-19)



We see that the 3 vectors of (1.3.3-17) do not form a basis for R® since we cannot express
any vector v € R’ with v, # 0 as a linear combination of {l_)“], l_)[z], l_)m} since

2 1 1 2V, =V, + Y,
v=y,0|+ v |1 | +v|-1|=|V,-V, (1.3.3-20)
0 0 0 0

We see however that if we instead had the set of 3 linearly independent vectors

2 1 0
=10 b¥=[1| b¥=]o0 (1.3.3-21)
0 0 2

then we could write any ve R’ as

v, 2 1 0] |2v,+v,
V=1V, =0+ vl +v|0]=]v, (1.3.3-22)
v, 0 0 2 2v,

(1.3.3-22) defines a set of 3 simultaneous linear equations

2v, +Vv,=V,
V,=V,

2v,=v, (1.3.3-23)

v :%, vy =V, v, :szz) (1.3.3-24)



We therefore make the following statement:

Any set B of N linearly independent vectors b[l], b[z], oo b[N] e RN can be used as a basis
for RY.

We can pick any M subset of the linearly independent basis B, and define the span of this
subset {b[l], b[z], oo b[M]} c B as the space of all possible vectors v € R" that can be
written as

v=cbM+ b+ .+ o™ (1.3.3-25)

0
and b =0].(1.3.3-26)
2

Then, span {Lm , b } is the set of all vectors v € R’ that can be written as

For the basis set (1.3.3-21), we choose b!" =

S O N

v, 2 0] [2¢
v=|v, |=cib+cpPl=¢;[0]+c3|0|=]0 (1.3.3-27)
v, 0 2 2c,

Therefore, for this case it is easy to see that v_€ span {Lm , bm }, if and only if (“iff”)
Vy = 0.

Note that if ve span{ b!'', b®! } and we span{ b!"!, bP'}, then automatically
v+w espan {b", b }.

We see then that span{ bl'! | bP®!} itself satisfies all the properties of a vector space
identified in section 1.3.1.

Since span{ b, b} = R’ (i.e. it is a subset of RY), we call span{ b, b } a
subspace of R’.



This concept of basis sets also lets us formally identify the meaning of dimension — this
will be useful in the establishment of criteria for existence/uniqueness of solutions.

Let us consider a vector space V that satisfies all the properties of a vector space
identified in section 1.3.1.

We say that the dimension of V is N if every set of N+1 vectors ym, y[z] . X[Nﬂ] eVis
linearly independent and if there exists some set of N linearly independent vectors

13[1], oo lg[N] € V that forms a basis for V. We say then that dim(V) =N. (1.3.3-28)

P

While linearly independent basis sets are completely valid, they are more difficult to use
than orthogonal basis sets because one must solve a set of N linear algebraic equations to
find the coefficients of the expansion

v=vb" +v,b" + . + v b™ (1.3.3-29)

1 12 N, ]
b;" b” .. bj v, v,

bl 2 pN '
272 2 V2|2 .Vz ¢ O(N) effort to solve for all v;’s (1.3.3-30)

1 2 N !
b b2 L b vy | Ve

This requires more effort for an orthogonal basis {Q[l], e, Q[N]} as

[l
V. = x.—g.' O(N?) effort to find all Vi’s

(1.3.3-9, repeated)



This provides an impetus to perform Gramm-Schmidt orthogonalization. We start with a
linearly independent basis set {bm, bm, e l_)[N]} for RY. From this set, we construct an
orthogonal basis set {Q[l], Q[z], e Q[N]} through the following procedure:

1. First, set U =p!""  (1.3.3-31)

2. Next, we construct Q[z] such that Qm ° Q[l] =0. Since Q“] = 13[1], and bm and b“] are
linearly independent, we can form an orthogonal vector U from b*! by the following
procedure:

2!

We write U = b + cUM  (1.3.3-32)
Then, taking the dot product with Q[l],

UPeUM =0=b"eU" +cUM e U"  (1.3.3-33)
Therefore
2T yll]

> (1.3.3-34)
ol

C

And our 2™ vector in the orthogonal basis is

b e !

U =p - U (1.3.3-35)




3. We now form QB] in a similar manner.
Since Q[z] is a linear combination of b“] and bm, we can add a component from 1_3[3 ]
direction to form U™,

QB] - b[3] + 02![2] + C]Q[l] (1.3.3-36)

First, we want U™ e U = 0= b e UM 4+, UM e U" +c, UM e UM (1.3.3-37)

=0
SO
_plBleylll
o=—27 U7 13339
2
b
A similar condition that U™ ¢ U® =0 yields
_pl3leyl2]
=2 U 13339
2
]
so that the 3" member of the orthogonal basis set is
3 2 3 1
UuBl=pbPl- M [2] — M U[l] (1.3.3-40)
U~=b 5 =
‘QD]‘ ‘g[l]‘

4. Continue for Qm,j =4, 5, ..., N where

. it | pbl e plkl
Ui =pi - SV gk (1.3.3.41)

- ‘U[k] 2

5. Normalize vectors if desired (we can do this also during construction of
orthogonal basis set)

e = (1.3.3-42)



As an example, let us use this method to generate an orthogonal basis for R’ such that the
1* member of the basis set is

1
ut'=11] 1.3.3-43)
0

First, we write a linearly independent basis that is not, in general, orthogonal. For
example, we could choose

1 1 0

=11 b¥=jo| b¥=|0 (1.3.3-44)
0 0 1

We now perform Gram-Schmidt orthogonalization,

1
1. ut=p=11 (1.3.3-45)
0

2. We next set

9[2] .Q[l]

2] — 2]
U“=b >
o

Q“] (1.3.3-35, repeated)

|
2
‘g[l]‘ =[1 1 0]|1]=2 (1.3.3-46)
0

1
bPeUM =11 0 0]]1|=1 (1.3.3-47)
0

SO



Ic
N
Il
o o =
1
|~

1
1|=|-=| (1.3.3-48)
0

Note UM e UM =112 -1/2 0]|1|=%-%=0 (1.3.3-49)
0

We now calculate

e ot

) (1.§.3-41, repeated)

|-

2 2 2
hﬂﬂ‘=nu 12 0] “l:(lj+("g e )
44 2

b[s].g[Z]:[O 0 1]|-=1|=0 (1.3.3-51)

b eUM=[0 0 1]|1[=0 (1.3.3-52)
0

0
We therefore have merely U =bP1 = (0| (1.3.3-53)
1



Our orthogonal basis set is therefore

1 0
U= U= | - > uPl=10| (1.3.3-54)
0 1




