
1.3.4 Null Space (kernel) and Existence/Uniqueness of Solutions 
 

We now have the tools necessary to consider the existence and uniqueness of solutions to 
the linear system of equations 
 
Ax = b    (1.3.4-1) 
 
Where x, b ∈RN and A is a N x N real matrix. 
 
As described in section 1.3.1, we interpret A as a linear transformation that maps each 
 v∈RN    into some Av∈RN according to the rule 
 
 
 

Av =      (1.3.4-2) 
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Pictorially, we view the problem of solving Ax = b as finding the (or one of many?) 
vector(s) x∈RN that maps into a specific b under A. 
 
 
              RN   v    A         Av 
            0    A       0    RN 

             x    A      b 
 
 
 
 
 
Here we have shown that for any real matrix A, the rule for forming Av (1.3.4-3) 
guarantees that 
 
A0=0     (1.3.4-4) 
 

Where 0 is the null vector, 0 =     (1.3.4-5) 
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We always have one vector, 0, that maps into 0 under A.  Crucial to the question of 
existence and uniqueness of solutions is the existence of any other vectors w≠ 0 that also 
map into 0 under A. 
 
We define the null space (or kernel) of a real matrix A to be the set of all vectors w∈RN 
such that Aw = 0.  Pictorially, we view the kernel of A, denoted KA, as 
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        RN 
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     A 
 
 
We use the concept of the kernel (null space) to prove the following theorems on 
existence/uniqueness of solutions to Ax = b. 
 
 
Theorem 1.3.4.1 
 
Let x∈RN be a solution to the linear system Ax = b, where b∈RN, A is an N x N real 
matrix.  If the kernel of A contains only the null vector, i.e. KA = 0, then this solution is 
unique (no other solutions exist). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Proof: 
 
Let x satisfy Ax = b.  Let y be some vector in RN that also satisfies the system of 
equations Ay = b. 
 
If we define v = y – x, we can write this 2nd solution as 
 

y =  x + v     (1.3.4-6) 
 
Then, 
 

Ay = A(x + v) = Ax + Av     (1.3.4-7) 
 
Since x is a solution, A x = b, and 
 

Ay = b + Av     (1.3.4-8) 
 
If y is to be a solution as well, then Ay = b.  This can then be the case only if 
 

Av = 0     (1.3.4-9) 
 
Therefore, if x is a solution, every other solution must differ from x by a vector v∈KA. 
 
Since we have stated that for our matrix A, the only vector in the kernel is the null vector 
0, there are no other solutions y≠ x to Ax = b. 
 
Q.E.D. = “Quod Erat Demonstrondum” 
    “That which was to have been proven” 
 
We have proven a theorem on uniqueness.  We must not prove a theorem on existence. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



To do so, we define the range of A, denoted RA, to be the subset of all vectors y∈RN 
such that there exists some v∈RN with Av = y. 
 
 
There exists                       some vector v 
 
RA { }yvA with RvRy NN =∈∃∈≡      (1.3.4-10) 
 
 
 
Every  
y∈RN 
    under the condition that 
 
Pictorially, we view the range as 
 
 
  RN        RN 
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          RA 
  v              Av≠ y 
 
     A 
 
No vectors map into the port of RN outside of the range. 
 
 
Theorem 1.3.4.2: 
 
Let A be a real N x N matrix with kernel KA⊂RN and Range RA⊂RN.  Then 
 

(I) the dimensions of the kernel and of the range satisfy the “dimension theorem” 
   dim(KA) + dim(RA) = N     (1.3.4-11) 
 
(II) If the kernel contains only the null vector 0, dim(KA) = 0.  As the range 

therefore has dimension N, RA = RN, and for every b∈RN, there exists some 
x∈RN with Ax = b (existence). 

 
 
 
 
 
 
 
 



Proof: 
 

(I) Let us use an orthonormal basis {U[1], U[2] , …, U[M] , U[M+1] , …, U[N]} 
For RN such that the 1st M vectors form a basis for the kernel KA. 
 
Since the kernel satisfies all the properties of a vector space itself, we can 

construct the M basis vectors for KA, for example by Gram-Schmidt 
orthogonalization.  Once we have identified these M basis vectors, we can 
continue with Gram-Schmidt orthogonalization to finish the basis set. 

 
We can therefore write any w∈KA as 
 
W = c1U[1]+ c2U[2]+…+ cMU

[M]     (1.3.4-12) 
 
 
And the dimension of the kernel is obviously M, 
 
dim(KA) = M    (1.3.4-13) 
 
We now write any arbitrary vector v∈RN as an expansion in the basis, 
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Then, taking the product with A, 
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 (1.3.4-15) 

 
We therefore see that any vector Av ⊂RA can be written as a linear 

combination of the N – M vectors {AU[M+1], …, AU[N]}. 
 
Therefore dim(RA) = N – M and dim(KA) + dim(RA) = N 
 

(II) Follows directly 
 
 
 
 
 
 
 
 
 
 
 



Taken jointly, theorems 1.3.4.1 and 1.3.4.2 demonstrate that if KA = 0, i.e. only the null 
vector maps into the null vector under A, then Ax = b has a unique solution for all b. 
 
What happens if the kernel of A is not empty, i.e. there exists some w≠ 0?  Let us 
consider a specific example. 
 
Look at a system with 
 

A =      (1.3.4-16) 
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Then for any v∈R3 
 

Av = =      (1.3.4-17) 
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Writing  

v = v1e[1]+ v2e[2]+ v3e[3],     (1.3.4-18) 
 

Av = v1Ae[1]+ v2Ae[2]+ v3A e[3]     (1.3.4-19) 
 
With  
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















1    0    0
0    0    0
0    0    0

















0
1
0

















0
0
0

 

Ae[3] = = = 
















1    0    0
0    0    0
0    0    0

















1
0
0

















1
0
0

e[3] 

(1.3.4-20) 
 

Therefore 
 

Av = v10 + v20 + v3e[3] = v3e[3]     (1.3.4-21) 
 
 

This information is “lost” when mapped by A 



We therefore see that for this A, any vector that is a linear combination of e[1] and e[2] is 
part of the kernel, 
 

w= w1e[1] + w2e[2] ∈KA     (1.3.4-22) 
 
we then can say that KA = span{e[1],e[2]}, and so dim(KA) = z.     (1.3.4-23) 
 

Also since for any v∈R3, Av = = v
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3e[3]; therefore RA = span{e[3]}, dim(RA) = 1     

(1.3.4-24) 
 
As expected from the dimension theorem, dim(KA) + dim(RA) = 3    (1.3.4-25) 

 
Now, does Ax = b have a solution? 
 

- if b∈RA, i.e. b =     (1.3.4-26) , then yes, there is a solution. 
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We easily see that a solution is 
 

x = (1.3.4-27), A
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b     (1.3.4-28) 

 
There are however an infinite number of solutions, since any vector  
x + w1e[1] + w2e[2] is also a solution as  

 
A(x + w1e[1] + w2e[2]) = Ax + w1Ae[1] + w2Ae[2] 

                                            =Ax + w10 + w20RA     (1.3.4-29) 
=b 

 

- if b∉RA, i.e. b =  with either b
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1≠ 0 or b2≠ 0, then Ax = b has no 

solution. 
 
 
 
 
 



We see therefore that we have the following three possibilities regarding the existence 
and uniqueness of solutions to the linear system Ax = b, A N x N real matrix, b∈RN. 
 
 
Case I 
 
The kernel of A is empty, i.e. KA = 0.  Then, RA = RN and for all b∈RN there exists a 
unique solution x. 
 
 
 
Case II 
 
There exists w  0 for which A≠ w = 0.  Let dim(KA) =M, and {U[1], U[2], …, U[M]} forms 
an orthonormal basis KA, 
 
W = c1U[1] + c2U[2] + …+ cMU[M] ∈  KA, Aw = 0     (1.3.4-30) 
 
If then 0... ][]2[]1[ =•==•=• MUbUbUb , then b∈RA and solutions exist, but there are 
an infinite number.  If Ax = b, then A(x + c1U[1]+…+ cMU[M]) = b  (1.3.4-31) as well. 
 
Case III 
 
Again dim (KA)=M, M  and {1≥ U[1],…U[M]} forms an orthonormal basis for KA. 
 
Now, for at least on U[j], j = 1, 2, …, M, 0][ ≠• jUb .  Therefore b∉RA and the system 
Ax = b has no solution. 
 
While these rules provide insight into existence and uniqueness, to employ them we need: 

1. A method to determine if KA = 0 from the coefficients of A 
2. A method to identify basis vectors for KA 

 
 
Point (1) is the subject of the next section.  (2) is discussed in context of eigenvalues. 
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