
1.4.1 LU Decomposition

In section 1.3.6, we have seen that calculating the inverse of a matrix A involves solving
N linear problems:

A
[k]~

a = e[k] (1.4.1-1)

For the N column vectors
[1]~

a , … ,
[N]~

a of A-1. Each of these N problems involve the
same matrix A, so the Gaussian elimination procedure for each is the same.

Often in the practice of numerical calculations for more advanced problems, we have to
repeatedly solve a linear system with the same matrix A, but with different right hand
side (RHS) vectors b[1], b[2],…

Ax[k] = b[k] (1.4.1-2)

LU decomposition is a technique that allows us to “remember” all of the row eliminations
that we must perform to solve a linear problem with the matrix A. In the future, we
therefore need only perform the N2 operations required for substitution to solve the
system with a new RHS vector b[k].

Let us consider LU decomposition 1st for Gaussian elimination without partial pivoting.

Consider the system Ax = b with the augmented matrix

(A, b) = (1.4.1-3)























NNNN2N1

33N3231

22N2221

11N1211

b a ... a a
 : : : :

b a ... a a
b a ... a a
b a ... a a

We now perform the row operation

12122
11

21
211j212j

(2,1)
2j bλbb,

a
aλ ,aλaa −←=−← (1.4.1-4)

to obtain the equivalent system

(A(2,1), b(2, 1)) = (1.4.1-5)























NNNN2N1

33N3231

1) (2,
2

1) (2,
2N

1) (2,
22

11N1211

b a ... a a
 : : : :

b a ... a a
b a ... a 0

b a ... a a

We know from our choice of λ that the (2, 1) position of A21

(2, 1) must contain a zero.
Therefore, we are free to use the location in memory “wasted” in storing the known value
of zero to store something else – for example the valyue of . 21λ

In this case, the contents stored in memory will actually be

(A(2,1), b(2, 1))= (1.4.1-6)























NNNN2N1

33N3231

1) (2,
2

1) (2,
2N

1) (2,
2221

11N1211

b a ... a a
 : : : :

b a ... a a
b a ... a λ

b a ... a a

Next, we perform a row operation to “zero” the (3, 1) position.

The operations required are

131331j313j
(3,1)
3j

11

31
31 bλbb N), ..., 2, 1, (j aλaa ,

a
a

λ −←=−←= (1.4.1-7)

Since we know that a =0 by the coice of , we can use this position in memory to
store . The contents of memory are then

(3,1)
31 31λ

31λ

(A(3,1), b(3, 1)) = (1.4.1-8)

























NNNN2N1

1) (3,
3

1) (3,
3N

1) (3,
3231

1) (2,
2

1) (2,
2N

1) (2,
2221

11N1211

b a ... a a
 : : : :

b a ... a λ

b a ... a λ

b a ... a a

We then continue this process for the remainder of the Gaussian elimination algorithm.
At the end, our augmented matrix and all of the factors are stored in memory as ijλ

(A(N,N-1), b(N, N-1)) = (1.4.1-9)

























1)-N (N,
NN

1)-N (N,
NNN3N2N1

1) (3,
3

1) (3,
3N

2) (3,
333231

1) (2,
2

1) (2,
2N

1) (2,
23

1) (2,
2221

11N131211

b a ... λ λ λ
 : : : :

b a ...a λ λ

b a ...a a λ

b a ... a a a

Because we now store all of the factors, we have perfect memory of the row
operations that are required to solve A

ijλ
x[k] = b[k] with new RHS vectors b[k]. This saves us

the work of performing Gaussian elimination each time.

We 1st state how this knowledge of the ’s can be used to save the work of Gaussian
elimination for repeated problems with the same matrix A. Then, we demonstrate that
this approach is valid.

ijλ

From the final augmented matrix obtained by Gaussian elimination, let us extract the
lower and upper triangular parts into separate matrices.

L = U = (1.4.1-10)























 ...1λ λ λ
 : :

 1 λ λ
 1 λ

1

N3N2N1

3231

21

























 a
 : : :

 a ...a

 a ...a a

 a ... a a a

1)-N (N,
NN

2) (3,
3N

2) (3,
33

1) (2,
2N

1) (2,
23

1) (2,
22

1N131211

Where the Gaussian elimination has been performed without pivoting. Then, LU
Decomposition of A yields

A = LU (1.4.1-11)

This will be demonstrated shortly, but 1st let us see how we may use LU decomposition
to avoid repeated Gaussian eliminations when solving Ax[k] = b[k].

We substitute A = LU in this problem to obtain

Ax[k] = LU x[k] = b[k] (1.4.1-12)

If we define Ux[k] = c[k], we can solve Ax[k] = b[k] by solving successively the 2 triangular
problems

Lc[k] = b[k]
Ux[k] = c[k] (1.4.1-13)

The 1st problem involves a lower triangular matrix L,























 ...λλ λ λ
 : :

 λ λ λ
 λ λ

λ

NNN3N2N1

333231

2221

11























N

3

2

1

c
::
c
c
c

= (1.4.1-14)























N

3

2

1

b
::
b
b
b

This problem can be solved in N2 FLOP’s using forward substitution,

L11c1 = b1 => c1 = b1/L11
L21c1 + L22c2 = b2 => c2 = (b2-L21c1)/L22
L31c1 + L32c2 + L33c3 = b3 => c3 = (b3 – L32c2 – L31c1)/L33

:
:

Note that L11=L22=L33 = 1, so there is no problem here with division by zero.

The 2nd problem Ux[k] = c[k] involves an upper-triangular matrix and so may be solves in
N2 FLOPs’ using backward substitution.

Therefore, after we have performed LU decomposition on A in N3 FLOP’s once, we can
solve successive problems Ax[k] = b[k] on only 2N2 <<N3 FLOP’s.

LU decomposition (factorization) is a very useful and efficient technique that is used very
often in practice.

Now, let us show that the LU decomposition with L and U defined by (1.4.1-10) does in
fact satisfy A = LU.

To do so, let us define the matrix M as M = LU.

M = (1.4.1-16)























 ...1λ λ λ
 : :

 1 λ λ
 1 λ

1

N3N2N1

3231

21

























 a
 : : :

 a ...a

 a ...a a

 a ... a a a

1)-N (N,
NN

2) (3,
3N

2) (3,
33

1) (2,
2N

1) (2,
23

1) (2,
22

1N131211

By the rules of matrix multiplication, we have
M11 = a11 M12 = a12 ….. M1N = a1N (1.4.1-17)

So the 1st row of M equals the 1st row of A.

For the 2nd row,

M21 = a21λ 11 (1.4.1-18)

But since λ = a21 21/a11, M21 = a21 (1.4.1-19)

Next, for the (2, 2) position, using (1.4.1-4)

M22 = a21λ 12 + a1) (2,

22a = 21λ 12 + [a22 - a21λ 12] = a22 (1.4.1-20)

And similarly for j = 3, …, N

M2j = a21λ 1j + = a1) (2,

2ja 21λ 1j + [a2j - a21λ 1j] = a2j (1.4.1-21)

Therefore, the 2nd row of M equals the 2nd row of A.

Continue with 3rd row,

M31 = a31λ 11 = (a31/a11)a11 = a31 (1.4.1-22)

M32 = a31λ 12 + (1.4.1-23) 32λ 1) (2,

22a

With

32λ = / a = / a (1.4.1-24) 1) (3,
32a 1) (3,

22
1) (3,

32a 1) (2,
22

and a = a - λ (1.4.1-25) 1) (3,

32
1) (2,

32 31
1) (2,

12a

we have

M32 = a31λ 12 + [/ a1) (3,

32a 1) (2,
22a] 1) (2,

22a = 31λ 12+
1) (3,

32a

= a31λ 12 + [- = a1) (2,

32a 31λ 1) (2,
12a] 31λ 12 +[a32 - a31λ 12]

M32 = a32 (1.4.1-26)

And for j = 3, …, N

M3j = a31λ 1j + + (1.4.1-27) 32λ 1) (2,

2ja 2) (3,
3ja

Using

2) (3,
3ja = - = - (1.4.1-28) 1) (3,

3ja 32λ 1) (3,
2ja 1) (3,

3ja 32λ 1) (2,
2ja

1) (3,

3ja = - = a1) (2,
3ja 31λ 1) (2,

1ja 3j - λ a31 1j (1.4.1-29)

we have = a2) (3,

3ja 3j - a31λ 1j - (1.4.1-30) 32λ 1) (2,
2ja

therefore,

M3j = a31λ 1j + + (1.4.1-31) 32λ 1) (2,

2ja 2) (3,
3ja

= a31λ 1j + λ + [a32

1) (2,
2ja 3j - a31λ 1j -] 32λ 1) (2,

2ja

M3j = a3j
The 3rd rows of M and A are equal.
We can continue this process to demonstrate that M = LU satisfies M = A.

As an example, let us consider the system of a3j - λ a31 1j - (1.2.1-15), 32λ 1) (2,
2ja

page (1.2.1-6),
















=

































2
7
4

x
x
x

6 1 3
3 1 2
1 1 1

3

2

1

 (1.4.1-32)

We performed Gaussian elimination without pivoting on this system, and write the results
as the L and U matrices

L = U = (1.4.1-33)
















1 2 3
 1 2

 1

















1
1 1-
1 1 1

Consult pages 1.2.1-6 to 1.2.1-11 to see the calculation performed during Gaussian
elimination for this system.

Then if M = LU, we have

M11 = 1 M12 = (1)(1) = 1 M13 = (1)(1) = 1
M21 = (2)(1) = 2 M22 = (2)(1) + (1)(-1) = 1 M23 = (2)(1) + (1)(1) = 3
M31 = (3)(1) = 3 M32 = (3)(1) + (2)(-1) = 1 M33 = (3)(1) + (2)(1) +(1)(1) = 6

(1.4.1-34)

Then,

M = LU = . So we see that for this example A = LU. (1.4.1-35)
















6 1 3
3 1 2
1 1 1

What form does an LU decomposition take when pivoting is performed? The book
keeping is more complex, but the routine for performing LU decomposition will return a
lower-triangular matrix L, an upper-triangular matrix U, and a permutation matrix P such
that

PA = LU (1.4.1-36)

Then to solve Ax[k] = b[k], we pre-multiply by P,

P Ax[k] = Pb[k] (1.4.1-37)

Substitute LU = PA,

Lux[k] = Pb[k] (1.4.1-38)

We now solve the successive triangular problems

Lc[k] = Pb[k]
Ux[k] = c[k] (1.4.1-39)

By permutation matrix, we mean only matrix that is obtained from the identity matrix by
a sequence of row or column interchanges.

For example, the permutation matrix P = has the effect (1.4.1-40)
















0 1 0
1 0 0
0 0 1

Pv = (1.4.1-41)
















0 1 0
1 0 0
0 0 1
















=

















2

3

1

3

2

1

v
v
v

v
v
v

P, obtained from I by interchanging row #2 and 3, therefore acts on a vector v by
interchanging the 2nd and 3rd components.

Since P performs a permutation of v, it is called a permutation matrix.

Note: As det(I) = 1, for any permutation matrix P, det(P) = ± 1 (1.4.1-42)

