1.4.1 LU Decomposition

In section 1.3.6, we have seen that calculating the inverse of a matrix A involves solving
N linear problems:

~[k]
Aa =M 1.4.1-1)

-1 ~[N]
For the N column vectors a , ..., a of A”'. Each of these N problems involve the

same matrix A, so the Gaussian elimination procedure for each is the same.

Often in the practice of numerical calculations for more advanced problems, we have to
repeatedly solve a linear system with the same matrix A, but with different right hand
side (RHS) vectors l_)[l], bm,. ..

AxM=pM  (1.4.1-2)

LU decomposition is a technique that allows us to “remember” all of the row eliminations
that we must perform to solve a linear problem with the matrix A. In the future, we
therefore need only perform the N” operations required for substitution to solve the

system with a new RHS vector b,

Let us consider LU decomposition 1* for Gaussian elimination without partial pivoting.



Consider the system Ax = b with the augmented matrix

a, a, .., b

A, @,y ... 8y b,
(A,b)=|a; ay, .. ay b,

|8y, @yy - 8y by |

(1.4.1-3)

We now perform the row operation

2,1)

ay < ay—hza;, Ay=—"b,«b,-2,b (14.1-4)
11
to obtain the equivalent system
a,, a,, ... a,y b,
@1 @n [
0 a5’ ...ay’ b;
2,01) 121y _
(A®D b* V)= la, a,, ..a, b, (1.4.1-5)
|an @xp - Bxy Dy |

We know from our choice of A,, that the (2, 1) position of A% must contain a zero.

Therefore, we are free to use the location in memory “wasted” in storing the known value
of zero to store something else — for example the valyue of A, .

In this case, the contents stored in memory will actually be

a, a, ..a, b

@1 @1
Ay oayoay
a;; @y, ... ayy D
Ay, Any - Any Dy

@1
b;

(1.4.1-6)




Next, we perform a row operation to “zero” the (3, 1) position.

The operations required are

x31=%, al) ay—Ayay (=1,2,.,N), by« b,—Ab,  (1.4.1-7)
11

Since we know that a}" =0 by the coice of ~ A,,, we can use this position in memory to

store  A;,. The contents of memory are then

a,, a,, ... a,y b,
@ @) KD
Ay ay,’ .oay’ b;

ACD B D)=y al” Ll BYY | (14.1-8)

Ay Axy - Any Dy

We then continue this process for the remainder of the Gaussian elimination algorithm.
At the end, our augmented matrix and all of the X factors are stored in memory as

a,, a, a;..ayDb

2,1 2,1 2,1 2,1
Ay a5 ay..ay’ b;

N,N-1 N, N-1)y _ s , s
(ANND pNNDy =1y, al?alh bey (1.4.1-9)

(N,N-1) 1. (N, N-1)
_le >LNz >\‘N3 e ANy bNN ]

Because we now store all of the ) factors, we have perfect memory of the row

operations that are required to solve Az[k] = b[k] with new RHS vectors l_)[k]. This saves us
the work of performing Gaussian elimination each time.



We 1% state how this knowledge of the A; ’s can be used to save the work of Gaussian

elimination for repeated problems with the same matrix A. Then, we demonstrate that
this approach is valid.

From the final augmented matrix obtained by Gaussian elimination, let us extract the
lower and upper triangular parts into separate matrices.

1 a;p adp Ay e Ay
an L@ @
Ay 1 Ay " A . Any
_ _ 3.2) 3,2)
L=k, Ay, 1 U= a3y .. Asy (1.4.1-10)
N, N-I
A Ang Aggeed | a%er )

Where the Gaussian elimination has been performed without pivoting. Then, LU
Decomposition of A yields

A=LU (1.4.1-11)

This will be demonstrated shortly, but 1* let us see how we may use LU decomposition
to avoid repeated Gaussian eliminations when solving Az[k] = h[k].

We substitute A = LU in this problem to obtain
AxM=LUxM=p" (@1.4.1-12)

If we define Ug[k] = g[k], we can solve Az[k] = b[k] by solving successively the 2 triangular
problems

Ll = K]
Ux=cM  (1.4.1-13)



The 1* problem involves a lower triangular matrix L,

Ay C b,
Ay Ay C, b,
Ay Ay Ay c, |=|b, (1.4.1-14)

This problem can be solved in N* FLOP’s using forward substitution,

Lijci=b;=>c;=bi/Lj
Loicy + Lascy = by => ¢, = (ba-Laici)/La
Lsici + Laacy + Lases = by => ¢3 = (bs — Lsaco — Lsjcy)/Lss

Note that L;;=L,,=L33 = 1, so there is no problem here with division by zero.

The 2™ problem Ux™™ = ¢! involves an upper-triangular matrix and so may be solves in
N? FLOPs’ using backward substitution.

Therefore, after we have performed LU decomposition on A in N* FLOP’s once, we can
solve successive problems Ax™™ = b™ on only 2N* <<N* FLOP’s.

LU decomposition (factorization) is a very useful and efficient technique that is used very
often in practice.



Now, let us show that the LU decomposition with L and U defined by (1.4.1-10) does in

fact satisfy A = LU.

To do so, let us define the matrix M as M = LU.

(1 Tian a8, a; .. ay
an .en @
| a’ all.. al
_ (3,2) (3,2)
M=|A; A, 1 ay .. ay
N-I
A Ane Aggeed | I a(I\TI‘IN ) |

By the rules of matrix multiplication, we have
M11 = ar M12 = a2 Ceeee MlN = aI|N (1.4.1-17)

So the 1% row of M equals the 1* row of A.
For the 2™ row,

My = A, an (1.4.1-18)

But since A,, =azi/a;;, Mo =ax;  (1.4.1-19)

Next, for the (2, 2) position, using (1.4.1-4)

(1.4.1-16)

M22 = 7\.218.12 + 3(222°1) = }\,218.12 + [2122 - 7\.218.12] = an» (1.4.1-20)

And similarly forj=3,...,N

Maj = Ay aj; + a(z?l)z Ayaij+ [ag - hyai] =ay  (1.4.1-21)

Therefore, the 2™ row of M equals the 2™ row of A.



Continue with 3" row,

Ms; = Ajan = (azi/an)an =as (1.4.1-22)

Ms; = Ayan+ Ay, al”  (1.4.1-23)

With

Ay, =afl/all =al/al?  (1.4.1-24)

and a{" =al" -4, 2%  (1.4.1-25)

we have

M = Ay an +[a$"/aG"1al) = A, a00a"
= Ayant[al” - &y, all]= Ay an+Hasn - Ay an]

Msy =asz, (1.4.1-26)

And forj=3,...,N

Ms;= A, a5+ Ay, azi D a(3 2 (1.4.1-27)

Using

(3.2) _ (3 1) (3 H _ .G (2 1)
a3J ay ' -Apay =ay - Ay ay (1.4.1-28)

ag = afl - hyalV=ag- Ay (1.4.1-29)
we have a§? =az- Ay a;- Ay, 2l (1.4.1-30)

therefore,

_ 2,1) (3 2)
Ms;= Aj,a5+ Ay, a2J + ay; (1.4.1-31)
_ . 2,0 . . 2,1
=hy a5+ Ay, ay  + [asj - Ay a15- Ay, a5 ]

M3J a3;
The 3™ rows of M and A are equal.
We can continue this process to demonstrate that M = LU satisfies M = A.



As an example, let us consider the system of a3j - A5 a;5- A5, a%’” (1.2.1-15),
page (1.2.1-6),

11 1]x, 4
2 1 3|x,|=|7 (1.4.1-32)
31 6]x, 2

We performed Gaussian elimination without pivoting on this system, and write the results
as the L and U matrices

1 111
L=[2 1 U=| -1 1| (@1.4.1-33)
32 1 1

Consult pages 1.2.1-6 to 1.2.1-11 to see the calculation performed during Gaussian
elimination for this system.

Then if M = LU, we have

M11=1 M12=(1)(1)=1 M13=(1)(1)= 1

My =(2)(1)=2 Mp=2)1)+(1)(-1)=1 My =2)(1)+(1)(1)=3

Mz =(3)(1)=3 Mz =3)(1)+2)(-1)=1 Ms3=3)(1)+(2)(1)+(1)(1)=6
(1.4.1-34)

Then,

1

1 1
M=LU=|2 3|. So we see that for this example A=LU. (1.4.1-35)
3 6

1
1



What form does an LU decomposition take when pivoting is performed? The book
keeping is more complex, but the routine for performing LU decomposition will return a
lower-triangular matrix L, an upper-triangular matrix U, and a permutation matrix P such
that

PA=LU (1.4.1-36)

Then to solve Ax™M = b, we pre-multiply by P,

P AxM=pp  (1.4.1-37)

Substitute LU = PA,

Lux™'=pPb  (1.4.1-38)

We now solve the successive triangular problems

Lg[k] _ Pb[k]
UxM =M (1.4.1-39)

By permutation matrix, we mean only matrix that is obtained from the identity matrix by
a sequence of row or column interchanges.

100
For example, the permutation matrix P= {0 0 1[{® ] has the effect (1.4.1-40)

010I

1 00]|v, v,
Pv=10 0 1||v,|=]|V, (1.4.1-41)
010]|v, v,

P, obtained from I by interchanging row #2 and 3, therefore acts on a vector v by
interchanging the 2™ and 3™ components.

Since P performs a permutation of v, it is called a permutation matrix.

Note: As det(I) = 1, for any permutation matrix P, det(P)= £ 1 (1.4.1-42)



