
10.34 Quiz 1, October 4, 2006 

Solution – Graded out of a total of 15 points + 1 bonus point 
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(a) Write a couple of Matlab functions that together compute the concentrations [P] and 
[Nutrients] (units: M = moles/liter), as well as the number of cells per liter, in the output 
stream when the system is operated at steady-state.  Give numerical values for all the inputs. 
Do you think that scaling will be a problem?  Explain and give an appropriate scaling factor 
if necessary. 

10 points 
- 2 pts: general structure of the functions 
- 0.5 pts: Unit errors/mismatches 
- 4.5 pts: Each balance equation (1.5 pts each) 
- 0.5 pts: Writing the fsolve equations correctly as dX/dt = In – Out + Gen – Consum.  This is 
essential to getting the sign of the Jacobian eigenvalues correct (but not the solution). 
- 2.5 pts: Scaling assessment (1 pts for scaling could be a problem; 1.5 pts for scaling factor) 

For this part, you were essentially asked to write a program that can solve the problem, giving all 
the numerical inputs necessary to run the function.  These could be passed to the function as 
arguments, or included in the function/script body as parameter definitions.  Two Matlab 
functions (one each for scaled and unscaled Ncells) are included at the end as examples of possible 
solutions (of course, this is not the only way to solve the problem, but it works).  Executable .m 
files are also posted on MIT Server. The basic approach should have involved using fsolve to 
solve a set of nonlinear equations. Other functions that could have been used were fzero 
(probably not a good choice), fminsearch, and fmincon. An ODE solver approach is also 
valid and would generally give you a stable solution (expect with a very unfortunate initial guess 
that is close to the unstable conditions).  The three equations that needed to be solved were the 
dNcells/dt = 0, the nutrient balance, and the product balance. These were given to you for the 
most part in the supplied functions, but you needed to define the nutrient consumption rate and 
the P production rate in terms of the known system properties; the resulting equations are: (be 
sure that you convert the flow rate to L/sec) 
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Scaling could be a problem in this scenario due to the large differences in the inherent system 
variables, but does not make the system intractable.  Regardless, scaling is usually beneficial and 
should be done. The appropriate scaling factor can be determined if one assumes all nutrients 
are consumed in the reactor and [P] = 0.  This forces Cell Multiplication Æ 0, and the nutrient 
consumption rate equation can be solved for an upper bound on Ncells. This value can be used as 
a scaling factor, similar to the characteristic scales seen in transport problems.   

* Vflow [Nutrient  ]In 0.0383 ×0.2 4Ncells = = −7 = 7.67 ×10 cells

k2 1 10 
× 

In a real situation, one would want to scale both the number of cells and the system parameters 
that are also based on the number of cells (i.e. k2, k3, and c2). However, since the functions were 
prewritten for you in this exercise, one could not do it without rewriting the functions.  As can be 
seen by running the posted files, proper scaling of the variable does make convergence to the 
solution significantly faster.  For an initial guess of Ncells_0 = 1e5, C_nut_0 = 0.05, 
C_P_0 = 0.05, the convergence is 13 iterations and 56 function calls for unscaled and 4 iterations 
and 20 function calls for the case where the Ncells and parameters are scaled. 
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(b) If your program from part (a) works correctly, how would you test whether the solution 
found is physical and achievable (i.e. stable)? (Explain in words; bonuses for giving correct 
relevant equations and/or Matlab functions). 

3 points + 0.5 bonus points 
- 1 pt: giving the physical bounds on the variables 
- 2 pts: Jacobian eigenvalues must be less that zero 
- 0.5 pts: giving Jacobian expressions and/or Matlab function 

For feasibility, one needs to look at the realistic limits of the problem variables.  In this problem 
scenario, the physical range of the variables is as follows: 

Ncells ≥ 0 0 ≤ [Nutrients  ] ≤ 0.2M [P] ≥ 0 

In order to test for stability, you can compute the Jacobian matrix for the system of equations 
Ji,k = (dfi / dxk) and examine the eigenvalues.  Ideally, one would like to see that all of the 
eigenvalues of the Jacobian are less than zero at the solution, signifying that a perturbation to the 
solution will decay back to the same solution. This can be accomplished in two ways: 
calculating the analytical derivatives or asking fsolve to return the numerical Jacobian at the 
solution. The syntax for the latter is: 

[var,fval,exitflag,output,jacobian] = fsolve(@chemostat,var_0,... 

For this set of conditions and the unscaled problem, the solution and the eigenvalues of the 
Jacobian are shown below (you obviously could not calculate this during the test): 

Number of Cells in Reactor = 7.456518e+004 

Concentration of Nutrients (M) = 0.00051114

Concentration of Product (M) = 0.00017513 


Eigenvalues of Jacobian: -0.4016, -0.0095, -0.0383 

If you have the analytical Jacobian, it is often useful to pass this to the solver, as it can greatly 
enhance the performance and convergence. The analytical Jacobian would be: 
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⎤


⎢ ⎥

⎢∂Ncells ∂[  ]  Nut  ∂[ ]P ⎥ 
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⎢
⎢
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⎢ ∂F3 ∂F3 ∂F3 
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Where the F’s are those three equations given earlier used to solve the problem.  The analytical 
derivative were calculated using Maple and can be seen at the end of this solution. 
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(c) If your program from part (a) converges to an unphysical or unstable solution, what would 
you do next to try to find an experimentally-relevant steady-state solution? (Explain in 
words; bonuses for giving correct relevant equations and/or Matlab functions.) 

2 points + 0.5 bonus points 
- 2 pts: Systematic and logical varying of initial guesses and/or explaining the concept and use 
of homotopy to achieve a stable solution 
- 0.5 pts: Matlab code showing how to implement the strategy 

For nonlinear problems, there is no sure way to ensure a feasible solution (or any solution for 
that matter).  This means that one of the most effective ways of finding a desirable solution is to 
try different initial guesses. This can be done easily in a systemic way for systems with a small 
number of variables that solve quickly: make a vector of reasonable initial guess for each 
variable, and iterate over all combinations of initial guesses to try to find a feasible solution. 
One could also try random initial guesses using the rand function to generate a random number 
between 0 and 1, and then scaling it by the appropriate amount.  Using the concept of homotopy 
as described in Beers’ text on page 121 is also a valid answer.  In this approach, you would start 
with a physical situation in which the solution is trivial (i.e. washout in this case with a very high 
flow rate), where the inlet and outlet conditions are the same.  Then, the flow rate is slowly 
stepped down to the actual conditions, using each successive solution as the initial guess to the 
next step. 

An example of the scan of the initial guess space is shown below.  Even with this simple 
example, the fsolve function must be executed 1000 times.   

Ncells_0 = logspace(5,7,10); % number of cells

C_nut_0 = linspace(0,0.2,10);

C_P_0 = logspace(-6,0,10);


L1 = length(Ncells_0);

L2 = length(C_nut_0);

L3 = length(C_P_0);


options = optimset('Display','off','MaxFunEvals',10000,'MaxIter',1000);
for i=1:L1 

for j=1:L2
for k=1:L3

 var_0 = [Ncells_0(i); C_nut_0(j); C_P_0(k)];

 step = L2*L3*(i-1) + L3*(j-1) + k; 

var(:,step) = fsolve(@chemostat,var_0,options,C_nut_in,params); 

end

end


 disp(['Step Number ',num2str(L2*L3*(i-1)),' of ',num2str(L1*L2*L3)]);
end 
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These are possible additional functions that are needed to solve the problem.
Unscaled and scaled are both presented (note in the scaled case, the
parameter definitions also need to be changed (see .m posted on MIT Server) 

% 10.34 - Fall 2006

% Chemostat problem

% Rob Ashcraft - Oct. 4, 2006


% Chemostat problem

function quiz1_main_unscaled 


clear; clc;

global V_flow Vrxtr 


% define the parameter values

params = param_set; 


V_flow = 2.3/60; % liters/sec

Vrxtr = 150; % liters

C_nut_in = 0.2; % in Molar


%initial guesses

Ncells_0 = 1e5;

C_nut_0 = 0.05;

C_P_0 = 0.05; 


var_0 = [Ncells_0; C_nut_0; C_P_0]; 


options = optimset('Display','iter','MaxFunEvals',10000,'MaxIter',1000,'TolX',1e-8,'TolFun',1e
-
8'); 


[var,fval,exitflag,output,jacobian] = fsolve(@chemostat,var_0,options,C_nut_in,params); 


jacobian_at_solution = jacobian

Jac_cond_number = cond(jacobian)

Jacobian_eigenvalues = eig(jacobian) 


disp(' ');

disp(['Number of Cells in Reactor = ',num2str(var(1),'%8.6e')]);

disp(['Concentration of Nutrients (M) = ',num2str(var(2))]);

disp(['Concentration of Product (M) = ',num2str(var(3))]);

disp(' ');

disp(['Production Rate of Product (mole/hr) = ',num2str(var(3)*V_flow*3600)]);

resid_final = chemostat(var,C_nut_in,params) 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function resid = chemostat(var,C_nut_in,params) 


global V_flow Vrxtr 


Ncells = var(1);

C_nut = var(2);

C_P = var(3); 


CMrate = Cell_Multiplication(Ncells,C_nut,C_P,params);

NCrate = Nutrient_Consumption(Ncells,C_nut,C_P,params);

Prate = P_production(Ncells,C_nut,C_P,params); 


dNcell_dt = CMrate - V_flow*Ncells/Vrxtr; 


nutrient_bal = (C_nut_in - C_nut)*V_flow - NCrate; 


P_bal = Prate - V_flow*C_P; 


resid = [dNcell_dt; nutrient_bal; P_bal]; 


return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% 10.34 - Fall 2006

% Quiz 1

% Rob Ashcraft - Oct. 4, 2006


% Chemostat problem with Ncells and parameters scaled

function quiz1_main_scaled_all 


clear; clc;

global V_flow Vrxtr scaling_factor 


V_flow = 2.3/60; % liters/sec

Vrxtr = 150; % liters

C_nut_in = 0.2; % in Molar


%scaling factor for Ncells:

scaling_factor = V_flow*C_nut_in/1e-7; 


% define the parameter values

params = param_set; 


sc_Ncells_0 = 1e5/scaling_factor; % scaled number of cells

C_nut_0 = 0.05;

C_P_0 = 0.05; 


var_0 = [sc_Ncells_0; C_nut_0; C_P_0]; 


options = optimset('Display','iter','MaxFunEvals',10000,'MaxIter',1000,'TolX',1e-8,'TolFun',1e
-
8'); 


[var,fval,exitflag,output,jacobian] = fsolve(@chemostat,var_0,options,C_nut_in,params); 


jacobian_at_solution = jacobian

Jac_cond_number = cond(jacobian)

Jacobian_eigenvalues = eig(jacobian) 


disp(' ');

disp(['Scaled Number of Cells in Reactor = ',num2str(var(1),'%8.6e')]);

disp(['Number of Cells in Reactor = ',num2str(var(1)*scaling_factor,'%8.6e')]);

disp(['Concentration of Nutrients (M) = ',num2str(var(2))]);

disp(['Concentration of Product (M) = ',num2str(var(3))]);

disp(' ');

disp(['Production Rate of Product (mole/hr) = ',num2str(var(3)*V_flow*3600)]); 


resid_final = chemostat(var,C_nut_in,params) 


return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function resid = chemostat(var,C_nut_in,params) 


global V_flow Vrxtr scaling_factor 


sc_Ncells = var(1);

C_nut = var(2);

C_P = var(3); 


CMrate = Cell_Multiplication(sc_Ncells,C_nut,C_P,params);

NCrate = Nutrient_Consumption(sc_Ncells,C_nut,C_P,params);

Prate = P_production(sc_Ncells,C_nut,C_P,params); 


dNcell_dt = CMrate - V_flow*sc_Ncells/Vrxtr; 


nutrient_bal = (C_nut_in - C_nut)*V_flow - NCrate; 


P_bal = Prate - V_flow*C_P; 


resid = [dNcell_dt; nutrient_bal; P_bal]; 


return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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