
Final Exam Review - Model vs Data


December 15, 2006 

Model vs. Data 

In most experiments we can control a set of independent variables x and can 
measure the value of the dependent variable y. For such a system we can 
propose a model which relates the value of the dependent variable to the 
values of the independent variables as shown in Equation(1) 

y = f(x; Θ)	 (1) 

The aim of the generating a model for the system is to obtain an answer 
to the following three questions 

For what value of Θ is the deviation between model and data minimum? • 

Is the model consistent with the data? • 

•	 What are the error bars on the values of parameters? 

In the context of models we classify models as linear or non-linear. Linear 
models depend on the parameters Θ linearly. For example the log of the rate 
of an arrhenius reaction is linear in the parameters log(A) and E

R 
a . This 

model is linear even tough log(A) is not linearly dependent on the dependent 
variable temperature T . 

Ea
log(k) = log(A) −	 (2) 

RT 
Usually in solving these problems we make the following two assumption 

1. The dependent variable	y, that is being measured is distributed nor­
mally (a gaussian distribution) around its mean value. This distri­
bution can be due to many factors which are not in control of the 
experimentalist. 

2. On the other hand the independent variables x are known exactly. 
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Best values of parameters 

Let us assume that the model that we have is correct and that the standard 
deviation of the random errors in the measurement of the dependent variable 
y is σ. Then the probability of getting a measured value yi is given by the 
Equation(3). 

p(yi) ∝ exp 
(yi − f(xi; Θ))2 

(3) −
2σ2 

If we perform N different experiments then the probability of obtaining 
a vector y measurements of the dependent variables is given in Equation(4). 

N� (yi − f(xi; Θ))2 

p(y) exp∝ −
2σ2 

i=1 

N1 � 
∝ exp −

2σ2 
(yi − f(xi; Θ))2 (4) 

i=1 

The probability of getting this vector y becomes highest when sum of 
squares of errors become minimum. Thus the idea of minimizing the sum 
of squares of errors is based on the assumption that the errors in the mea­
surement are normally distributed. Central limit theorem ensures that this 
assumption is justified if we assume that each measurement is obtained by 
performing many repeats. 

If the model is linear then we have an analytical solution for the best fit 
values of the parameters. If the model is non-linear in parameters then there 
can potentially be multiple local minima and we have to be careful. The 
linear model can be written as shown in Equation(5). 

y = X Θ (5) 

The solution to the model is given by the expression in Equation(6). 

Θ = (XT X)−1XT y (6) 

A potentially better method of solving minimization problem is by per­
forming SVD decomposition of X (recall SVD of X gives three matrices U , 
Σ and V which are related to X as X = UΣV ). The best fit values of Θ are 
given in Equation(7). 

N� Ui.y 
Θ = Vi (7) 

σii=1 
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Model consistency 

Let σ be the variance in the measured data. Then the probability that we 
get a vector y of measured values is given by Equation(4). Now we define a 
parameter χ2 as � �2 

χ2 
N yi − f(xi; Θ) 

= 
σi=1 

The least square method of calculating the parameters is nothing but the 
same as minimizing the value of χ2 . Also χ2 is the a sum of N normally 
distributed quantities with mean 0 and variance 1. This χ2 is itself a random 
variable and is distributed as chi-square distribution with N −dim(θ) degrees 
of freedom. This chi-square distribution can be used to quantify the goodness 
of the fit. The probability of a model being correct is given by the area under 
the curve of a chi-square pdf between the abscissa χ2 and inf. 

Confidence intervals 

If we know the value of σ we can assume that y is distirubted normally around 
its mean value ŷ with a variance σ. We can then go ahead and calculate the 
approximate probability distribution functions of the parameters. From the 
probability distribution functions of the parameters we can calculate the 95% 
confidence intervals for the parameters. If the model is linear in parameters 
then one would expect that if the pdf of y was normal then the pdf of the 
parameters would also be normal. This is infact true and for more than one 
parameter we obtain a higher dimension gaussian. The covariance matrix for 
the parameters Θ; cov(Θ) = σ2[XT X | ]−1 . The 95% confidence intervals ΘM 

for a parameter θ is given in Equation(8). 

θi = θM,j ± Z2.5σ [XT X | ]−1 −1/2 
(8) θM jj 

An interesting thing to note in the above equation is that the error bars 
on a parameter θi depends on the matrix X and thus by cleverly chosing 
our experimental conditions we can use a X that minimizes the error bars 
on the parameter of interest. When the model is not linear we can still use 
Equation(8) to calculate the error bars on the parameters, only in this case 
we can generate a linearised design matrix using Equation(9) and then use 
Equation(7) to calculate the error bars on the matrix. 

∂f(xi, Θ)
Xi,j = (9) 

∂θj 

This is the same way that matlab function nlinfit and nlparci work. 
Note that by using this linearized design matrix we lose the information 
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of the covariance between different parameters. The graphical way to look 
at any pair of parameters is to plot the χ2 value for a range of these two 
parameters. To convert the χ2 plot to a plot of probability we just calculate 
the value of Δχ2 = χ2(θ1, θ2) − χ2 and this value of Δχ2 is distributed min 

with a chi-square distribution of 2 degrees of freedom. An example of this 
was worked out in the homework 9. 
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