
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #7: Introduction to Eigenvalues and Eigenvectors. 

Newton’s Method (Multi-dimensional) 
 

F(xtrue) = 0

Newton: Taylor expansion around xguess  If Δx is small. Works well when xguess is close 

F(xguess) + J(xguess)Δx ~ 0.0  xtrue ≈ xguess + Δx

 

Select xguess;  usually difficult to get a good guess 

compute F(xguess), J(xguess) 
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factorize J  L U  

solve L U Δx = -F  backsub: L V = -F; U Δx = V

xnew = xguess + Δx

if ||xnew – xguess|| < tolx 
CONVERGENCE 

if ||F(xnew)|| < atolf  rtol doesn’t work for F(x) = 0 

xguess  xnew 

Iterate from compute F(xguess) 

 

If J is singular or poorly conditioned, will not be able to solve. 
If Δx is big, method will not work. 
In general, radius of convergence is small 

- can bound Δx size 
- can stop iteration after a certain number, for example, 20 iterations to see 

Assumption of Newton’s Method is xguess is VERY GOOD 
How close does xguess have to be to guarantee convergence? 

• radius of convergence 

Backtrack Line Search 
If you think xnew is too big, you can backtrack by looking at: 
||F(xguess)||- ||F(xnew)|| 

xguess  

FJF ⋅=∇

ΔxNEWTON 

 
Δx = -J-1F

xnew (Newton)  

g(λ) = ||F(xguess)+λΔxNEWTON|| 
by minimizing g(λ) using Bisection (etc.) 

 
 
Maybe direction F(xguess) to F(xnew) is wrong 

Figure 1. Trying to find x between xguess and xnew that gives lower ||F||. 

f(x) = ||F(x)||2 = Σ|Fi(x)|2

Minimize scalar function:  FJF
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fJf •=∇  is a move downhill 

If xguess is good, Δx = -J-1F is the best direction but more risky (good if you can see the end)  

f∇  is if “you are lost”  Brute force 

1) Most risky method (Newton) 
2) Safest method 
3) Dogleg: compromise 

 
Figure 2. The relationship of Newton’s Method to Dogleg Method. 
 
fsolve implements Dogleg Method using “Trust Region” 

If xNewton is within the trust region, 
the function will quickly converge 

 

 

Read ‘doc fsolve’ 

Figure 3. If F( ) is close to x~ F(xguess), you can expand the trust region. 
 
*fsolve has this all built in and is therefore much more powerful than simple Newton’s 
method. 

Optimization 
)(min xf

x
 

f∇  = 0 is a bad way to do this (i.e. fsolve(gradf, xguess)) 

The matrix is positive definite and  
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Strategy: find regions where the problem can be considered optimization 

f = ||F||2  problem is there are local minimums 

f∇  = J·F  can be zero if J is singular and F is in   “BAD DIRECTION” 
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J singular  rank(J) < N 

J·vbad = 0    

 
 
 



if f∇ =0, no way of knowing which direction to go in. 

J·vbad = 0*vbad  

J·vbad = λvbad      λ = 0 

Poor conditioning 
A·x = b

A·vbad = λvbad   A(x+vbad) = A·x + A·vbad  
  ≈0           b       δb
 
Certain linear combinations of values you can determine well.  Other combinations you 
cannot determine. 
 A·x=b
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  A-1  vbad   

  x = A-1b  

Sensitivity 

 
VT = V-1

( ) 00 λ
usually:  A = V·Λ·VT  A·V = V   
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If you have large dimensional problem, it is difficult to give good xguess

Look at Ftrue(x): can you change to a different problem? 
Fapprox(xguess)=0 solvable (ideally, linear) 
 
Ftrue=Fapprox + λFperturb

 
You want to solve: 
Ftrue(x) = 0 

Is there an Fapprox(x) = 0 that is soluble through linearization? 

   xguess  

Ftrue = Fapprox + λFperturb  solve new problem with small λ: 
 linear Fapprox(xguess = xguess

approx)  xguess,1

 or easy or linear 
 xguess  Fapprox + 0.001Fperturb(xguess,1)  xguess,2

 Fapprox + 0.01Fperturb(xguess,2)  xguess,3

Ftrue – Fapprox          Increment λ until λ = 1 

 

If the program crashes, need to step back and choose λ as a smaller value. 

Lecture 8 will discuss when you can 
do this factorization 
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