
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #10: Function Space. 

Functional Approximation 
(Variables are scalar in this example) 
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el·ej = δjl  orthonormal    c = aTD 

 

We want to do the same with functions.  How do you take dot product? 

Define “φn·φm” =  “works”: <φ∫
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g(x) = 1 x: -1  +1  Legendre polynomials 
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1) We chose a basis {φn(x)} and an inner product 

 orthonormal: <φm|φn> = δmn  

2) We’re trying to solve Ôf(x) = q(x)      (“In most problems, these are all vectors, 

unknown given   but that looks too scary to start with”) 
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Look for solutions:  funknown(x) ≈ ∑  )(xc nnφ
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F(a,b,cn,m) = v(m,a,b) 

 F(cn,m) = v(m)  Now solve for cn. 

If Ô is a linear operator: 

 Ôfapprox(x) =  ∑∑ = )ˆ()(ˆ
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and if Ôφn = λnφn (i.e. φn is an eigenfunction of Ô) 

 Ôfapprox(x) =  ∑= )(xc nnn φλ
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sin   are eigenfunctions 

 cos 
 
Gives you a really messy equation: 
 
Suppose Ô = Ô1 + h(x) {i.e. Schrodinger Equation} 

Suppose Ô1φn = λnφ 
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mmnnmm bHcc =+∑λ  

(H+Λ)c = B  m=1,…N  Linear Problem:  c = (H+Λ)\b
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Must evaluate integrals Hmn: difficult to evaluate, quantum mechanics requires 6-
dimensional integrals. H becomes a large matrix when n gets large. 
 
Also have Boundary Conditions:  f(x = 0) = f0

Adds another equation:  0)0( fxc nn ==∑ φ

    v·c = f0

How to solve? Can try to fit by least squares and just fit all the equations approximately. 
Can drop larger n terms to leave space for boundary conditions. Another way would be to 
not consider the boundary conditions and then craftily choose Φn so that they solve the 
boundary conditions. 
 
To check if answer makes sense:  write out the series and see if cn converges 

Evaluate Residuals 
R = Ôf – q  

 max(R) < tol?                                                                  

 ||R(xi)|| < tol? 

we will evaluate this later 
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