
10.34, Numerical Methods Applied to Chemical Engineering 
Professor William H. Green 

Lecture #16: Unconstrained Optimization.  

Unconstrained Optimization 
minx f(x)      • 
    •   x[k+1] 

    xguess                                 Require: 

    x[k]    f(x[k+1])<f(x[k]) 

Which direction to move? 

Move Downhill  “Steepest Descent” 

• very robust but poor convergence at the end 

x 

 
Figure 1. Diagram of steepest descent approach to global minimum. 
 

Unless you start on the center line, you will zigzag inefficiently 

• going down contour lines is easy with this method 

 

fapprox(x) = f(x[k]) + ∇ f|x[k]·(x–x[k]) + ½(x–x[k])TB·(x – x[k]) 

(x – x[k]) = p = -∇ f(||∇ f||2/∇ fTB∇ f) {Cauchy} 

                                                B must be positive definite and not singular. 

 pcauchy  

        (-∇ f/||f||)Δ  max step size allowed   

psteepest descent =     pcauchy       take min ||p|| 

 

Look at Figures 5.5 and 5.6 in BEERS 
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Figure 2. An example of poor scaling. 
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If you rescale into circles (2nd derivatives similar), good scaling 

extremely poor 
scaling 

 Figure 3. SCALING IS KEY. 

 
Newton Step 

If fapprox is correct, guess 

O = ∇ fapprox = ∇ ftrue + B·p   

B·pnewton = ∇ ftrue|x
[k]  If B is accurate and initial guess is close, converges quickly; 

Similar to Newton’s:   {JΔx = F}    otherwise, you may step too far 



Dogleg or Trust Region Method 
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Figure 4.  Diagram of dogleg method. 

Broyden-Fletcher-Goldfarb-Shanno Algorithm (BFGS) 
1. have x[k]  f(x[k])  f(x[k])  B[k]    pold  

x[k+1] = x[k] + p

2. Compute f(x[k+1]), f(x[k+1]) 

3.   ( f(x[k+1])- f(x[k]))( f(x[k+1])- f(x[k]))T        (B[k]pold)(B[k]pold)T

B[k+1] = B[k] +       - 
   ( f(x[k+1])- f(x[k]))Tpold          (pold)T(B[k]pold) 

 

Most programs use this! 

Always get symmetric matrix but sometimes eigenvalues are negative 

Use Bnew = B[k+1] + τI to guarantee positive eigenvalues. 

In quantum mechanics, use estimates of stretching frequencies, but rest of bond angles are 

are set to be identity matrix.  

If number of variables (Nvariables) large, the total numbe of entries in B (N2
variables) will get too 

large. Can try sparse matrix storage methods. 

Conjugate Gradient Method 
Work like steepest descent but avoid zigzagging by forcing NEW direction to be orthogonal 

to OLD direction. 



 
Figure 5. Conjugate gradient method. 

Polak-Ribiere Formula for Step direction 
           f
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(x[k+1])·( f(x[k+1])- f(x[k])) 
(direction only) p[k+1] = - f(x[k+1]) +  pold,[k]

                      ||( f(x[k])||2   
 
  new 

For quadratic, it takes n steps to find the minimum (n = dimension) no matter what the 

dimension. Use this method for LARGE SYSTEMS. The minima found are local. 

* no matrices (doesn’t require a lot of memory) 

  For 2D quadratic, gives you exact minimum direction 

 

forced orthogonality  

   Figure 6. Diagram of search for global minimum. 
 

 must do “strong search” at each step to find absolute minimum 

 

B·pnew = - f 

 

f(x) = c + ½xTAx – b·x  

f = A·x – b    The Conjugate Gradient Method can solve linear systems. 

f = 0   A·x = b 
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ƒ = ½xTBx + f·x (x = p) use conjugate gradient to find p

 

ƒ = B[k+1] P + f(x[k+1]) great for sparse matrices 
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