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• Singular Value Decomposition: SVD 

Any rectangular m × n matrix A can be decomposed into a product of 
3 matrices as shown in Equation 1, where Σm×n is a diagonal matrix 
containing singular values σi of matrix A such that σi = 

√
λi, where λi 

are the eigenvalues of matrix AAT . U and V are orthonormal matrices 
i.e. V T = V −1 , UT = U−1 . The columns of U and V are called left sin­
gular and right singular vectors of A respectively. This decomposition 
is called Singular Value Decomposition (SVD) of matrix A. 

Am×n = Um×mΣm×nVn
T 
×n (1) 

. In matlab SVD of any matrix A can be performed using the command 
svd. 

The condition number of matrix is defined as cond(A) = σmax/σmin. 
SVD can be used to decouple a noisy signal into useful component and 
noise. Another useful application of SVD is in the solution of linear 
system of equations. The solution of a system of equation A x = b is· 
given in Equation 2, where we replace 1 with 0 if σi ≈ 0. If there are 

σi 

more equations than unknowns then the equation gives a least squares 
solution of the overdetermined set of linear equations. ⎞⎛ 

x = V
 ·

⎜⎜⎜⎜⎜⎝ 

1 0 0 0
σ1 

· · · · · · 
0 1 0 0

σ2 
· · · · · · 

.
. . 
0 0 1 0· · · 

σn 
· · · 

⎟⎟⎟⎟⎟⎠ 
·
UT ·
b (2)
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•	 Ordinary Differential Equations: ODE and Differential Al­
gebraic Equations: DAE 

The general form of ODE is given in Equation 3, where X is a vector 
of length n and F is a set of n functions. 

dX 
= F (X)	 (3) 

dt 

If we have an nth order ordinary differential equation, it can be con­
verted into n ordinary differential equations. To do that we define 
n − 1 new variables yi’s, where each yi = diy To solve a set of ODEs 

dti . 
we require the boundary conditions to be specified at t = t0. If all the 
Boundary conditions are not specified at at the same boundary then 
we can either use shooting method or solve the system as a boundary 
value problem. 

The solution of Equation 3 can be obtained by performing numerical 
integration as shown in Equation 4. 

t 
X(t) = X(t0) + F (X(t�)) dt�	 (4) 

t0 

If we are given the value of function F (X(t�)) at discrete points t1, 
t2...t3, we can use Trapezoid rule or Simpson’s rule to integrate the 
function. The local errors (error incurred per step) of Trapezoid rule 
and Simpson’s rule are O(Δt3) and O(Δt5) respectively. We can in­
crease the accuracy of the integration by using a more accurate method 
or decreasing Δt. Using too small of a time step leads to rounding off 
errors. To overcome this problem the concept of Richardson Extrapo­
lation is used. When applied to trapezoid rule we get the result shown 
in Equation 5. Notice that the error properties of the result are the 
same as that of Simpson’s rule. 

4 Δt 1 
X true(tf ) = X(tf , ) − X(tf , Δt) + O(Δt4) (5) 

3 2 3 

ODEs can be solved using explicit methods. Euler’s explicit method is 
the simplest explicit method but is inaccurate and unstable. More accu­
rate methods include Runge-Kutta methods of variable orders. These 
methods require more number of functional evaluations per step but 
also have higher order accuracy. Adaptive time stepping can be imple­
mented by using the Runge-Kutta methods. For example Runge-Kutta 
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method of fifth order require six function evaluations and the same six 
function evaluations can be used to get a fourth order method. The 
step size is varied until the difference between the fifth and fourth or­
der Runge-Kutta methods are obtained to within some desired level of 
accuracy. 

The explicit methods don’t perform well when the system of differential 
equations is stiff. A system is said to be stiff when there are two or more 
very different time scales involved in the problem. Chemical kinetics 
problems are very often stiff. The differential equation has to take 
time steps which correspond to the fastest time scale (small Δt) but 
the total time that it has to integrate to is very large because of the 
presence of the slow time scale. Thus the total number of time steps 
that the method has to take is high. If an explicit method tries to take 
time steps larger than the one corresponding to the fastest time scale 
then it becomes unstable. For example for a set of linear differential 
equations given in Equation 6, the time step of explicit euler method 
Δt < 2/λmax, where λmax is the largest eigenvalue (fastest time scale) 
of matrix C. On the other hand the implicit euler method is always 
stable for this system. 

X � = −C X (6) · 

Higher order implicit method generally implement multi-step predictor-
corrector type methods. In these methods we use the solutions at 
previous k steps (Xn, Xn−1, ..., Xn−k+1) to estimate a solution at the 
n+1th step. This initial guess is used to calculate an exact value of 
Xn+1 using a newton’s type iterative method. Polynomials relating 
Xn+1 to the previous values of X and their derivatives developed by 
Gear ensure stability for even stiff differential equations. 

Differential Algebraic equations are of the general form 

M(X)Ẋ = F (X) 

where M(X) is called the mass matrix and is singular. A important 
concept related to DAE is its index number, which is defined as the 
number of differentiations that is required to convert it into an ODE. 
Index-1 differential equations can be solved using techniques similar to 
the ones developed for ODEs. ode23s and ode23t can solve problems 
with constant singular mass matrices. � ode15i solves DAEs which are 
fully implicit F X, Ẋ, t = 0. 
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• Numerical Optimizations 

Optmization problems can in general be posed as follows 

min f(x) s.t. 
x 

hi(x) ≥ 0 i = 1 ni· · · 
gi(x) = 0 i = 1 ne (7) · · · 

If the inequality and equality constraints are not present then the prob­
lem is called unconstrained optimization problem. If gradient of the 
method is not provided then the problem can be solved using simplex 
method. This method is usually much slower than the gradient meth­
ods but for some problems is very robust. Matlab function fminsearch 
implements this algorithm. The gradient of the cost fuction is defined in 
Equation 8 and the negative of the gradient is the direction of steepest 
descent.
 ⎛ ⎞

∂f 
∂x1 
∂f 
∂x2 
. . . 

∂f 

⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎠�f
=
 (8)


∂xn 

method of steepest descent makes use of this fact and moves sequqn­
tially in the direction of the negative of the gradient. The size of the 
step depends on exact implementation of the algorithm. The steepest 
descent method makes fast progress initially but convergence of the 
method is slow when it reaches the bottom of the valley. In conjugate 
gradient method the step direction is not exactly the negative of the 
gradient but also has some element from previous search directions. 
This prevents the zig-zag trajectory which is a problem in the steepest 
descent method. 

Newtons method uses of the Hessian matrix which is provided in Equa­
tion 9. 

⎛ ⎞ 
∂2f ∂2f ∂2f 
∂x2

1 ∂x1∂x2 ∂x1∂xn 
· · · 

∂2f ∂2f ∂2f 
∂x2∂x1 ∂x2

2 ∂x2∂xn 
· · · 

. . . 
∂2f ∂2f ∂2f 

∂xn∂x1 ∂xn∂x2 ∂x2 
n 

· · · 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

H
=
 (9)


The newton step can be written as 

x k+1 − x k = Δx k = −H−1(x k) · �f(x k) 
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The calculation of Hessian matrix is usually costly and in its place a 
approximate Hessian is used. A commonly used approximation to the 
Hessian matrix is BFGS (Broyden-Fletcher-Goldfarb-Shanno) update. 

Method of Lagrangian multipliers is used for constrained minimizations 
with equality constraints. The lagrangian function L is defined as 

ne

L(x, λ) = f(x) − λigi(x) 
i 

At the constrained minimum the condition �f − λi�gi = �xL = 0 
and g(x) = �λL = 0 is satisfied. Thus the problem of constrained 
minimization involves minimizing the lagrangian with respect to both 
x and λ. Augmented lagrange methods add a quadratic penalty for 
straying away from the equality constraints. The augmented lagrangian 
is defined as 

ne� 1 
L(x, λ, µ) = f(x) − λigi(x) − 

2µi 
[gi(x)]

2 

i 

When inequality constraints are present then we can define a new la­
grangian which includes these inequality constraints. This lagrangian 
should satisfy the Karush-Kuhn-Tucker (KKT) conditions given in Equa­
tion 10. These conditions imply that, for active constraints h(xmin) = 0 
and for inactive constraints κj = 0. 

ne ni

L(x, λ, κ) = f(x) − λigi(x) − κihi(x) 
i=1 i=1 

�L(xmin) = 0 

gi(xmin) = 0 

hj (xmin) ≥ 0 

κj ≥ 0 

κj hj (xmin) = 0 (10) 

In Sequential Quadratic Programming we use the concept of slack vari­
ables. Each equality and inequality constraint is brough to a common 
ground by adding a slack variable to them. 
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• Boundary Value Problem 

Very often we need to solve a conservation equation for some scalar 
quantity (φ) at steady state. The conservation equation takes the form 

− �.(φv) + 2φ +
 S(φ) = 0 c�
convection diffusion generation 

For cartesian coordinates the above equation becomes 

∂φ ∂φ ∂φ ∂2φ ∂2φ ∂2φ 
vx 
∂x 

+ vy 
∂y 

+ vz 
∂z 

= Di 
∂x2 

+ 
∂y2 

+ 
∂z2 

+ S(φ) (11) 

If the velocity field is known at each point, then this problem can be 
solved using a basis function expansion i.e. representing φ = ciψi 

and then calculating the values of ci that satisfy the above equation. 
The ci are usually cleverly chosen so that they satisfy the boundary 
conditions. The other approach is the finite difference approach for the 
solution of the above equation which involves dividing the 3-D space 
of (x, y, z) into discrete coordinates (xi, yj , zk) and trying to calculate 
the value of φ(xi, yj , zk) at each of those points. The discrete form of 
the partial differential equation can be written by using the following 
approximations 

∂φ

∂x


φ(xi, yj , zk) − φ(xi−1, yj , zk) 
= 

Δx
(xi,yj ,zk) 

∂2φ 
∂x2 

φ(xi−1, yj , zk) − 2φ(xi, yj , zk) + φ(xi+1, yj , zk) 
= 

Δx2 
(xi,yj ,zk ) 

Similar approximations can be used to for y and z directions. Notice 
the firt order partial derivative is approximated using upwind difference 
formulation which in many cases is known to give stable results. Let 
us assume we divide x, y and z directions in l, m and n discrete points. 
The number of unknowns in this sytem will be l × m × n, but the 
discretized form of Equation 11 will provide us with only (l − 2) ×
(m − 2) × (n − 2) set of equations. The rest of the equations will be 
provided by the boundary conditions of the problem. The commonly 
found boundary conditions will be of two kinds, namely Dirichlet and 
Neumann. Dirclet boundary conditions are of the form 

φ(x, y, z)|B.C. = φB.C 
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and directly give the remaining equations to solve the system uniquely. 
In Neumann boundary conditions the derivatives at the boundary are 
given. When we discretize the derivative at the boundary condition we 
get the following equation 

−3φ(x1, y, z) + 4φ(x2, y, z) − φ(x3, y, z) dφ 
= 

2Δx dx 
x=x1 

The system of equation that results can be solved using any of the 
non-linear equation solvers. If the generation term is linear then the 
system of equations becomes linear and can be solved exactly using the 
\ command. 

Method of lines is a convenient method for solving these equations 
when we know that there is stiffness present in one direction, say the 
x direction. Then the equation can be discretized in the remaining 
directions and in the x direction it is solved using a stiff ODE solver 
like ode23s or even ode45 which is capable of doing adaptive time 
stepping. The only problem with method of lines is that the boundary 
conditions have to be known at the x = x1, if this is not true then a 
shooting method is used in the x direction. 

7


Cite as: Sandeep Sharma, course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT 
OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 


